




1340 Penn Avenue

Wyomissing, PA 19160

Phone: 610.678.3071

Fax: 610.678.3517

[www.bogiaeng.com](http://www.bogiaeng.com)

**HYDROLOGY & HYDRAULIC MODELING**  
**AND FLOODPLAIN MANAGEMENT ANALYSIS**

**EASTON COMMERCE CENTER**

FOR EASTON WOOD AVE. PROPCO, LLC

CITY OF EASTON, PALMER TOWNSHIP, AND WILSON BOROUGH

NORTHAMPTON COUNTY

PENNSYLVANIA



**Prepared by:** Ali Behbahani, EIT

Donald Haas, RLA

**Date:** May 2023

Revised: -

September 2024

PROJECT: 2022-528

**HYDROLOGY & HYDRAULIC MODELING AND FLOODPLAIN MANAGEMENT ANALYSIS  
NARRATIVE**

**EASTON COMMERCE CENTER**

**SCANNELL PROPERTIES**

**CITY OF EASTON, PLAMER TOWNSHIP, AND WILSON BOROUGH  
NORTHAMPTON COUNTY  
PENNSYLVANIA**

---

**TABLE OF CONTENTS**

|                                  | <u>Page</u> |
|----------------------------------|-------------|
| SITE HISTORY AND CONDITIONS..... | 3           |
| HYDROLOGY.....                   | 4           |
| HYDRAULIC ANALYSIS.....          | 6           |

**APPENDICES**

- Appendix A: StreamStats Report
- Appendix B: HEC-RAS Outputs for Existing Condition
- Appendix C: HEC-RAS Outputs for Proposed Condition
- Appendix D: Maintenance Plan
- Appendix E: FEMA Map and Report
- Appendix F: 50-Year Flood Modeling

## **SITE HISTORY AND CONDITIONS**

The site is partially developed with majority of undeveloped portions covered with dirt, grass, and woods. There is one perennial creek as well as an intermittent stream within and adjacent to the site. Bushkill Creek flows from north to south in the eastern side of the project site and the end discharge point is Delaware River. Bushkill Creek is labelled as Bushkill Creek Reach 1 in the FEMA flood map (42095C0278E; revised on July 16, 2014) and FIS (42095CV001A; revised on July 16, 2014). In FEMA documents, the flooding data were studied based on statistical analysis of stage-discharge records of a USGS station. The records were assessed by regional regression equations developed to estimate different frequency flood flows. The 100-year flood flow is calculated to be 8,100 cfs in this reach of Bushkill Creek. An unnamed tributary to Bushkill Creek, labelled as UNT in this report, is shown as Zone A of the Bushkill Creek floodway (i.e., floodplain without base flood elevation determined) on FEMA flood map. There is no separate study on this stream. It should be noted that the confluence of UNT and Bushkill Creek is located almost 1.34 miles upgradient of where Bushkill Creek discharges into Delaware River. Generally, from the historical records, areas within the City of Easton, Borough of Wilson, and Palmer Township are subject to flooding in all seasons and after tropical storms, rapid melting of snow, and infiltration losses due to frozen ground. Major flooding in the area have been associated with the flooding in Delaware River, however, some within-basin (i.e., related to tributaries of Delaware River) had occurred by cold-front (intense rain followed by cold weather) and warm-front (rainfall on winter snow) storms. Major floods of the Delaware River adjacent to project site have occurred in October 1903, March 1936, May 1942, and August 1955. Since the Bushkill Creek is tributary of the River and project is beyond 1.3 miles away from the River, the magnitude of flooding has been less severe. Similarly, the flooding in UNT is less severe than Bushkill Creek.

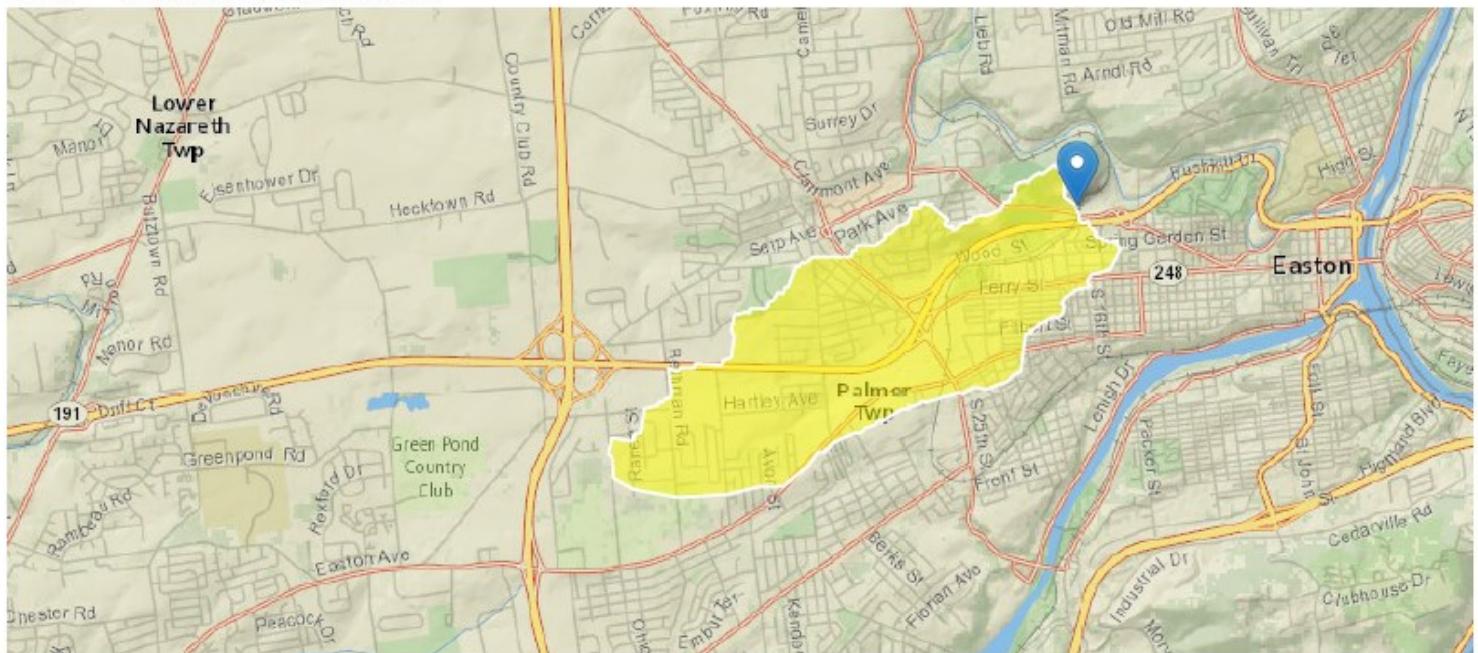
Major portions of the stream banks within and adjacent to project site are undeveloped and can provide natural flood storage capacity. Currently, there are a few structural flood protection measures that may mitigate the flooding along the Bushkill Creek. There will be no modifications or disturbance to Bushkill Creek in the post-construction conditions that would potentially change the flow patterns in streams. The UNT would be relocated to provide construction site, and the channel would pass through a culvert that is installed under a proposed access driveway. It should

be noted that the current path of UNT also passes through an underground tunnel. The proposed UNT obstruction will be replaced with a proposed relocated channel. The relocation made it feasible to improve the channel condition when comparing with the existing conditions by designing a stable channel with adequate capacity that can safely pass the 100-year flow. The stormwater in the post-construction condition is managed to lower the release rates compared to the existing condition via employing stormwater MRC BMPs, etc. Such stormwater management measures would assist in mitigating and controlling the flooding in the streams in the post-construction conditions.

## **HYDROLOGY**

The 100-year flow was used to model the pre- and post-construction floodplain boundaries, flood elevations, and flood flow velocities. Additionally, bank-full and base flow conditions were also modeled to simulate the normal stream condition. As mentioned before, the Bushkill is completely undisturbed and out of limit of disturbance in this project, while UNT is proposed to be relocated. The UNT is not listed and shown in the FEMA map and report, therefore, this stream was studied separately through available hydrological tools such as StreamStats and USGS stations. The 100-year flow data, extracted from StreamStats of 621 cfs is reported for the point at which the relocation is proposed (i.e., the common upstream of existing and proposed creeks), while bank-full and mean annual flows are reported 12.5 cfs and 3.43 cfs, respectively. As depicted below the drainage area associated with this point is estimated to be 2.32 sq.miles. The StreamStats report is presented in Appendix A of this document. In addition to abovementioned steady flow data, the stable channel design needed employing unsteady flow data to properly model the fluctuations in high and low flows and how the cycles of ups and downs in flow would impact sediment transport and as a result deposition and erosion patterns. To do so, the nearest USGS gauge to the site was identified and then the daily flow data for the last 15 years were extracted. Project specific flows were then estimated by adjusting the measured flows (USGS station) by drainage area. Known daily flow rate data from USGS station #01446776 Bushkill Creek at Tatamy, PA (almost 3.5 miles upstream of project site) was sourced from the USGS National Water Information System. The drainage area associated with this gauge is 31.2 sq.miles, while it is 2.3 sq.mile for the point of interest, therefore, the reported flows can be estimated from below conversion factor:

$$\text{Conversion Factor} = \frac{2.3}{31.2} 0.074$$


## Bushkill Tributary

Region ID: PA

Workspace ID: PA20230515123543682000

Clicked Point (Latitude, Longitude): 40.69561, -75.23498

Time: 2023-05-15 08:36:06 -0400



[Collapse All](#)

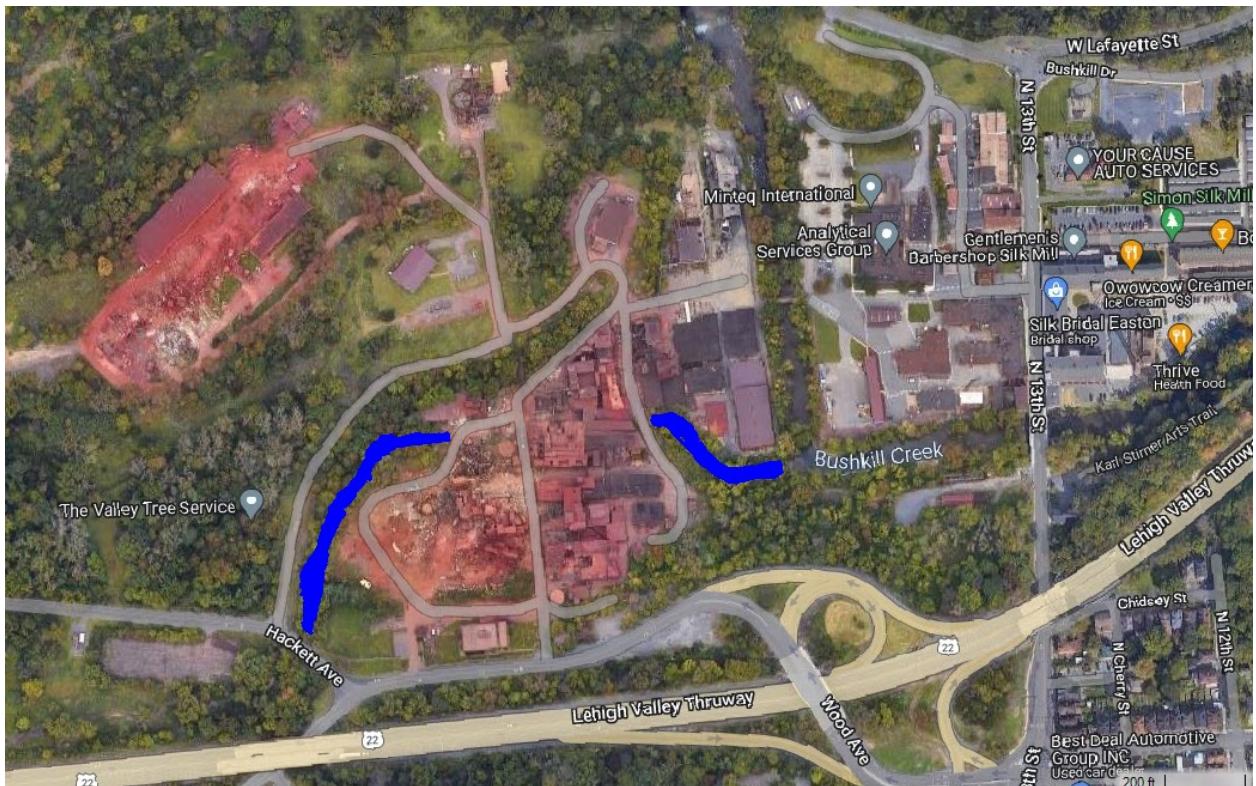
### ► Basin Characteristics

| Parameter Code | Parameter Description                                              | Value   | Unit                  |
|----------------|--------------------------------------------------------------------|---------|-----------------------|
| CARBON         | Percentage of area of carbonate rock                               | 93.03   | percent               |
| DRNAREA        | Area that drains to a point on a stream                            | 2.32    | square miles          |
| ELEV           | Mean Basin Elevation                                               | 360     | feet                  |
| FOREST         | Percentage of area covered by forest                               | 8.9887  | percent               |
| PRECIP         | Mean Annual Precipitation                                          | 45      | inches                |
| ROCKDEP        | Depth to rock                                                      | 5.4     | feet                  |
| STRDEN         | Stream Density -- total length of streams divided by drainage area | 0       | miles per square mile |
| URBAN          | Percentage of basin with urban development                         | 67.0411 | percent               |

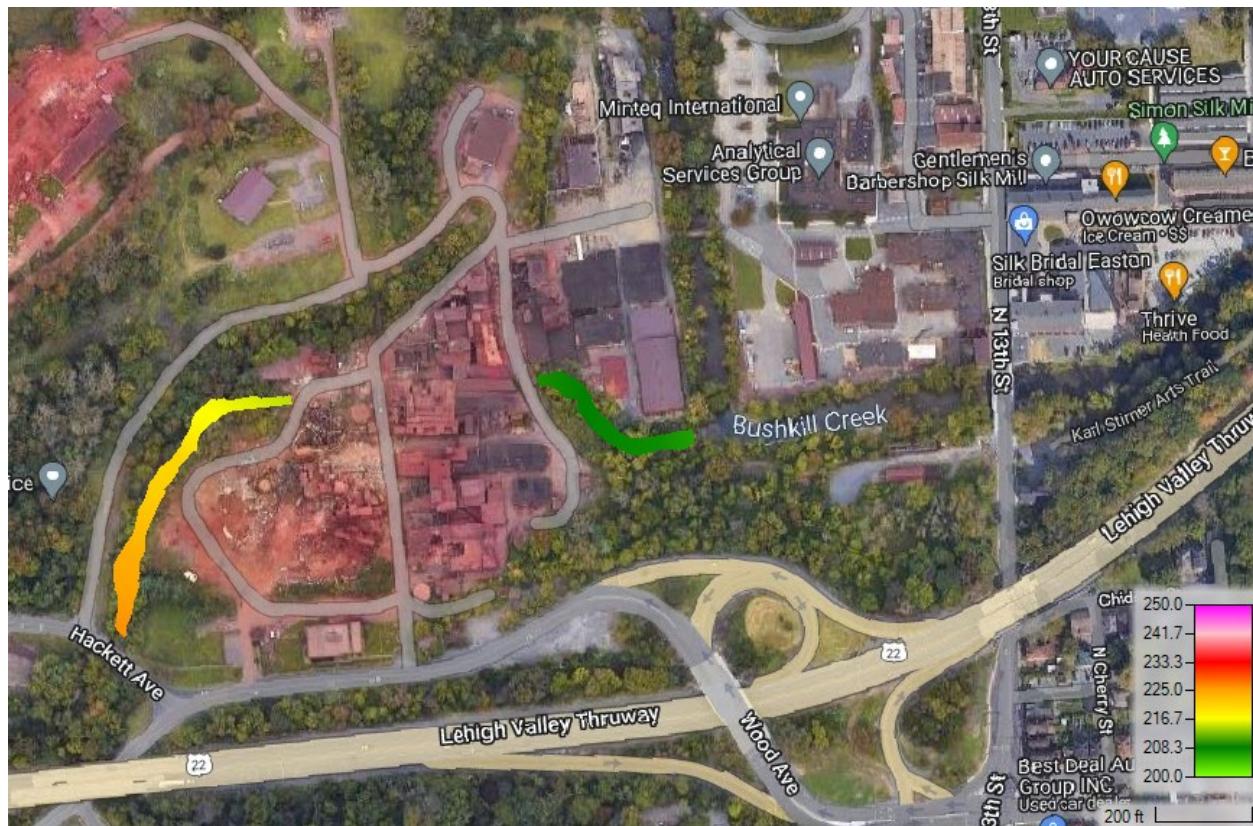
## **HYDRAULIC ANALYSIS**

The UNT in the needed to be modeled to determine the flood boundaries and elevations for pre- and post-construction conditions. It is only Bushkill Creek that is delineated for floodway and reported by FEMA, owing to its larger drainage area, and the other existing UNT within the project site have been considered as tributaries of Bushkill Creek and of a less concern because their flooding does not have floodway delineation. Nonetheless, the hydraulic modeling of the floods in UNT was performed because the project proposes a channel relocation as well as additions of a culvert for necessary stream crossings. As a result of the proposed development, a comparison basis for pre- versus post-construction flood characteristics was needed to show compliance with the chapter 105 requirements for stream obstruction/replacement.

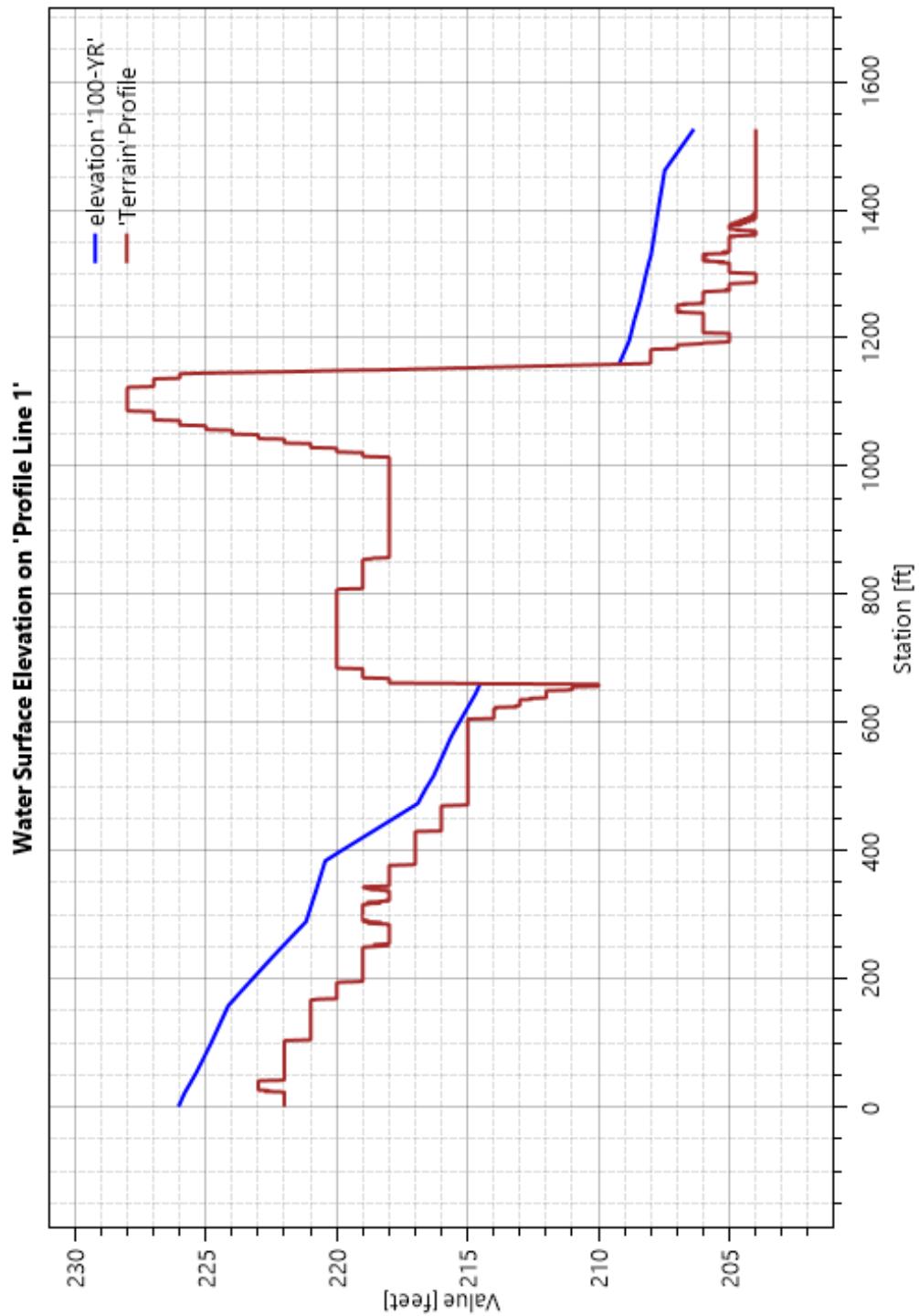
Hydraulic modeling had three parts:


- Modeling 100-year flood for the existing condition
- Modeling 100-year flood for the proposed condition
- Design of the relocated channel as a stable channel

The hydraulic modeling was performed by employing HEC-RAS. The hydrological input to HEC-RAS was provided by the hydrological studies that were described in the previous section. Geometry of the project site as well as offsite locations (to evaluate impacts of proposed development on upstream, downstream, and adjacent properties) was defined based on the site survey. The terrain in the HEC-RAS was generated by exporting the corresponding surfaces from Civil 3D. There is one spot at which the tributary streams of UNT discharges into Bushkill Creek, therefore, 1d hydraulic simulation was adopted to study the proposed project. The basis for flow simulation was Manning's equation and backwater analysis.


The results from the hydraulic flood modeling using HEC-RAS for the pre- and post-development conditions are presented here. First, the floodplain is delineated for both conditions by showing inundation boundary associated with 100-year flood flow. In the next step, the water surface elevations and flow velocities (velocity at water pool) are shown, and finally the cross-sectional views of pre- and post- construction water surface for each of the sections have depicted the impacts of the development on the flood elevation (reported in Appendices B and C). It should be noted that there is only FEMA flood elevations determined for Bushkill Creek that shows floodway

and floodplain associated with Bushkill Creek, and there is no delineated floodway or determined flood elevation for the studied UNT.

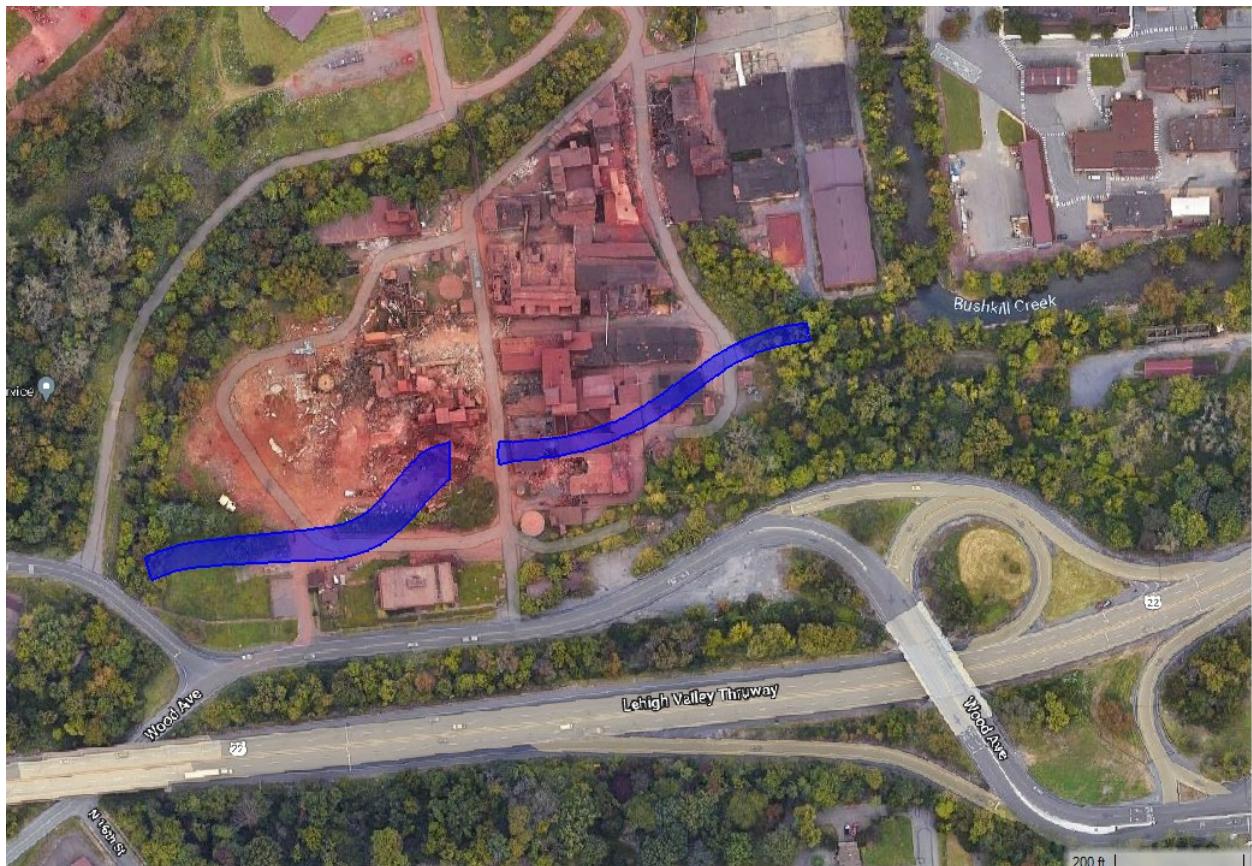

➤ Existing condition results



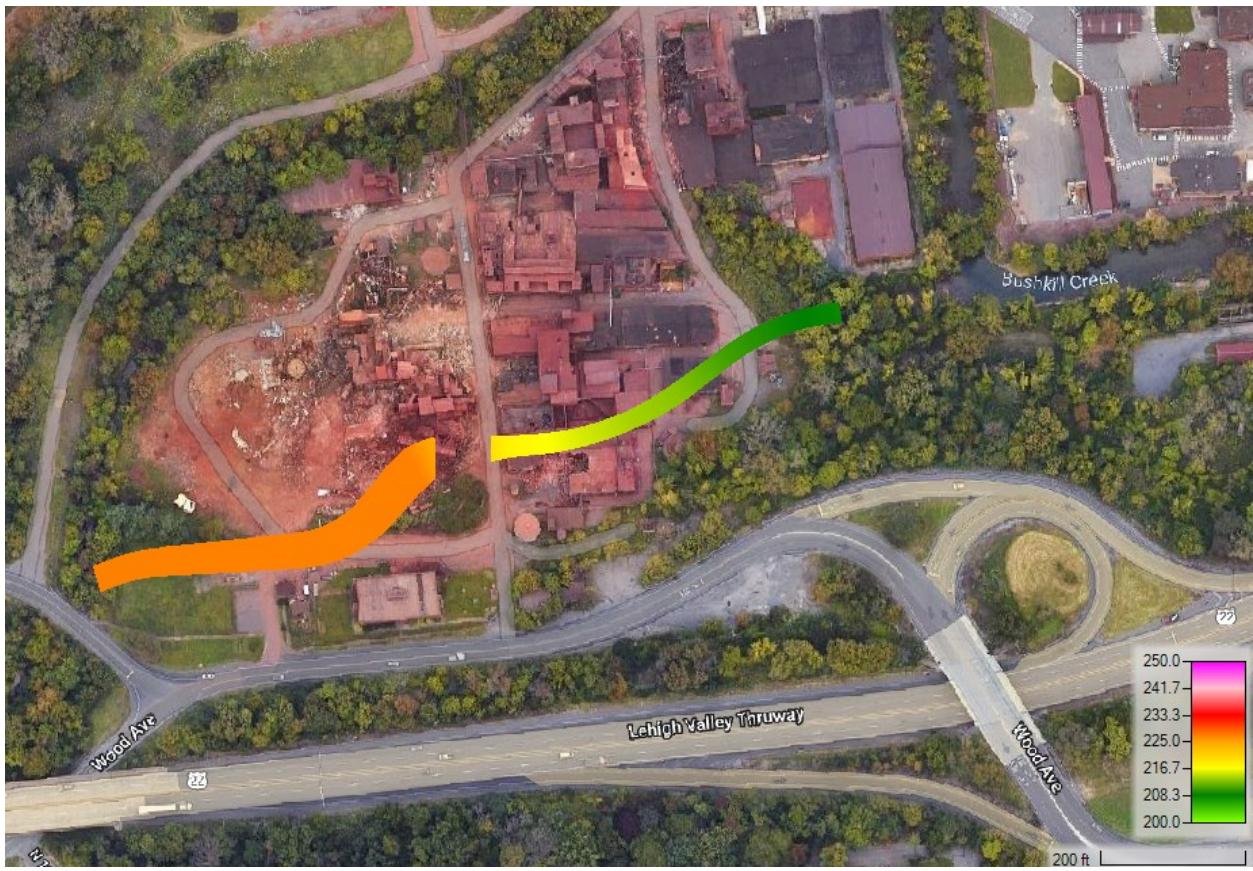
*Inundation boundary of 100-year flood for the pre-development condition.*



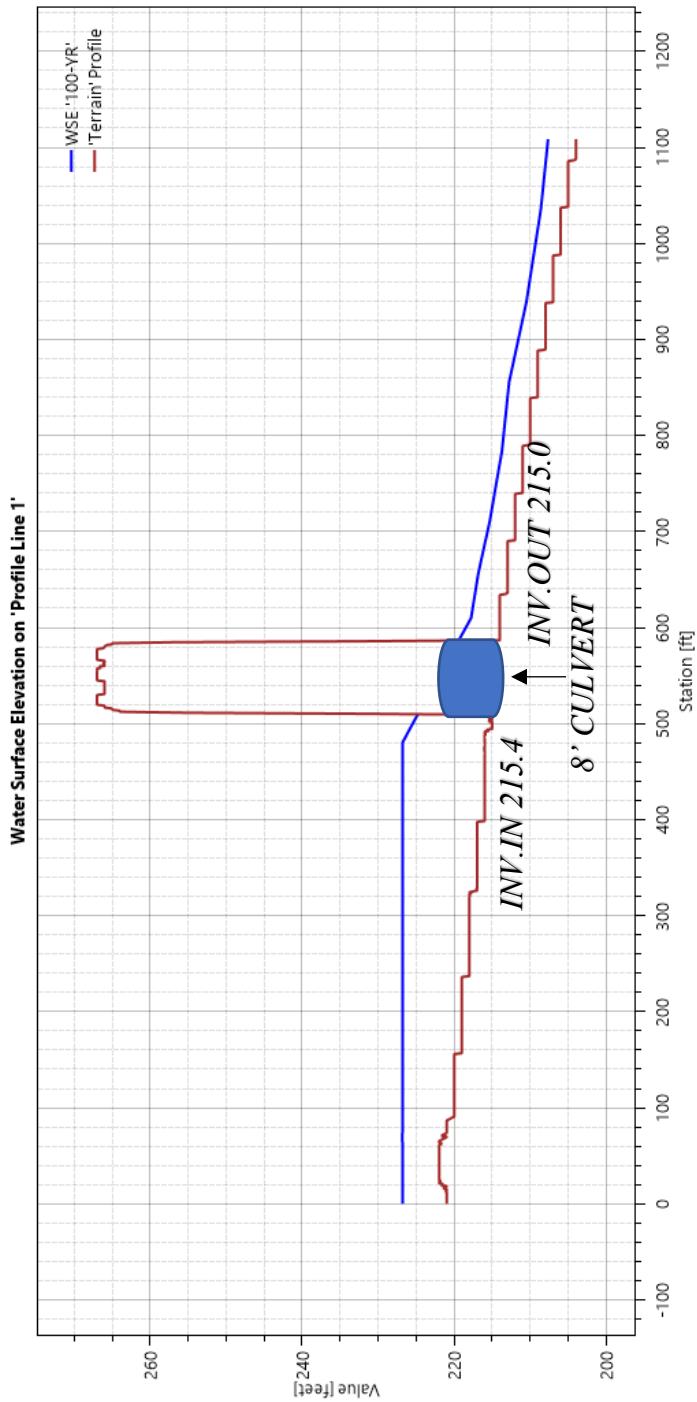
*Water surface elevation (ft; NAVD 88) of 100-year flood for the pre-development condition.*



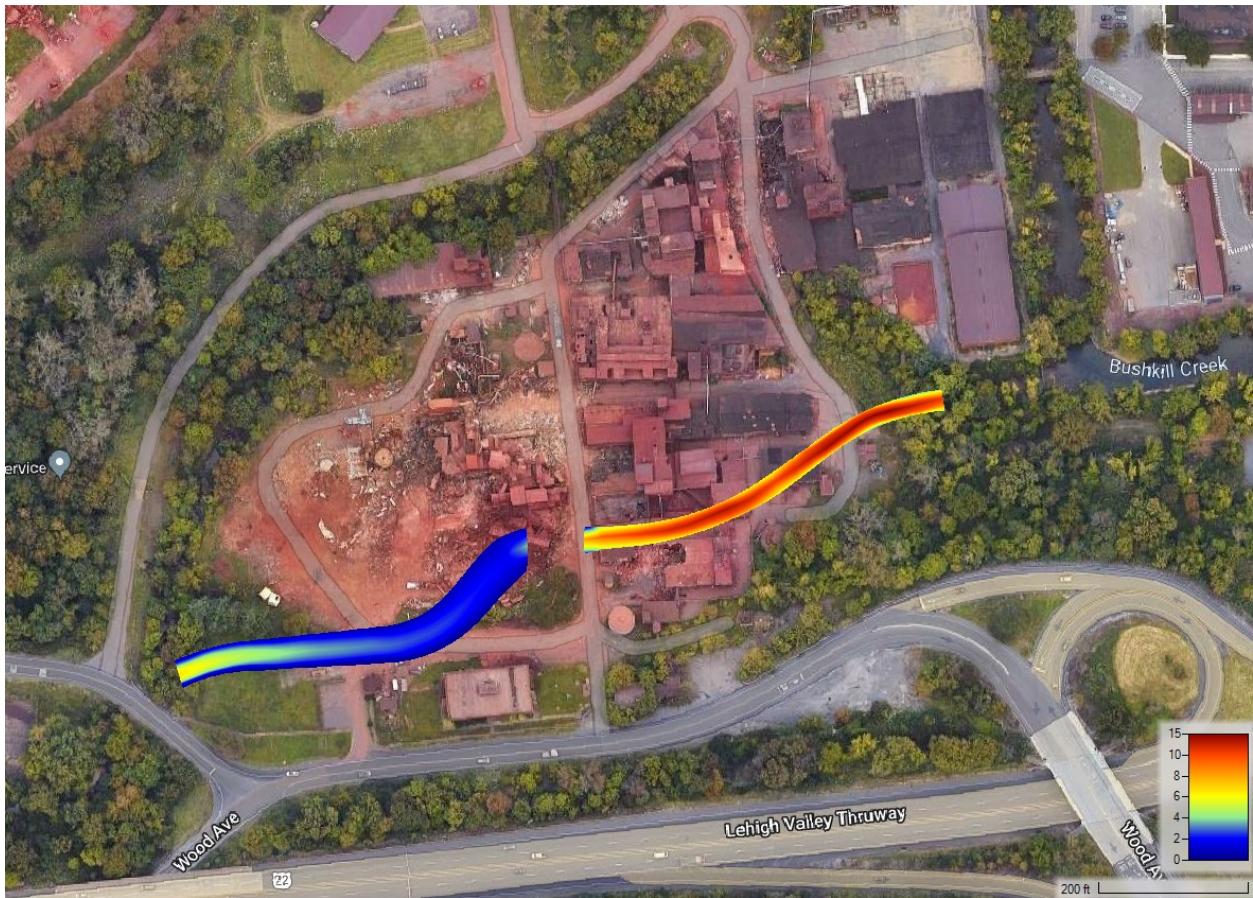

Existing channel profile view of water surface elevation (ft; NAVD 88) for 100-year flood in the pre-development condition.




*Maximum flow velocity (ft/s; at water pool) of 100-year flood for the pre-development condition.*


➤ Proposed condition results




*Inundation boundary of 100-year flood for the post-development condition.*



*Water surface elevation (ft; NAVD 88) of 100-year flood for the post-development condition.*



*Relocated channel profile view of water surface elevation (ft; NAVD 88) for 100-year flood  
in the post-development condition.*



*Maximum flow velocity (ft/s; at water pool) of 100-year flood for the post-development condition.*

In summary, the major changes of the relocated stream in the post-construction condition are:

- Installing one 8' concrete pipe culvert (#1) along UNT with total length of 76', upstream invert elevation of 215.4', and downstream invert elevation of 215.0'

As can be seen through the presented graphical results, the following stream crossing criteria are met by employing culverts with adequate hydraulic capacity:

- The floodplain boundaries of pre- and post-construction conditions of existing and proposed UNT are similar and none result in overflow from the banks.
- The post-construction increase in flood elevations in the flood areas delineated by FEMA map is less than 1', and many sections the post-development water surface is lower.

- The flow velocities in the pre- and post-construction condition as well as in the upstream and downstream of the culverts in the post-construction condition of UNT have improved compared to the pre-development condition.

In addition to the improvement in the flood management in the relocated channel, principles of stable channel design were employed to enhance the current conditions of the channel.

The proposed channel was designed based on the following criteria:

- Mimic the existing upstream cross section and modify cross sections where needed
- Safely convey the 100-year discharge
- Selection of bed material size to minimize the potential cross-sectional morphologic changes over time (i.e., limit scouring to protect downgradient streams)

Relocation of the channel reduces the floodplain dimension as well as mitigates the stream velocity. However, since the stream velocity in the post-development condition was still high and could pose erosive potential, the sediment transport through the channel was modeled. Based on the results from the sediment transport, the bed and bank material size was designed to impede erosion and therefore protect the downgradient stream. The sediment transport model was done by HEC-RAS and used flow data as explained in the Hydrology section of this document. Total suspended solid (TSS) data were extracted from USGS Gauge and based on that two concentrations each corresponding to minimum and maximum flow were determined.

A typical suspended solid size distribution in the stormwater for low flow conditions (TSS of 10 mg/L when the flow is 1.92 cfs), presented below, was employed as the incoming sediment into the channel:

Clay (0.002 mm to 0.004 mm): 15 %

VFM (0.004 mm to 0.008 mm): 20 %

FM (0.008 mm to 0.016 mm): 25 %

MM (0.016 mm to 0.032 mm): 25 %

CM (0.032 mm to 0.0625 mm): 10 %

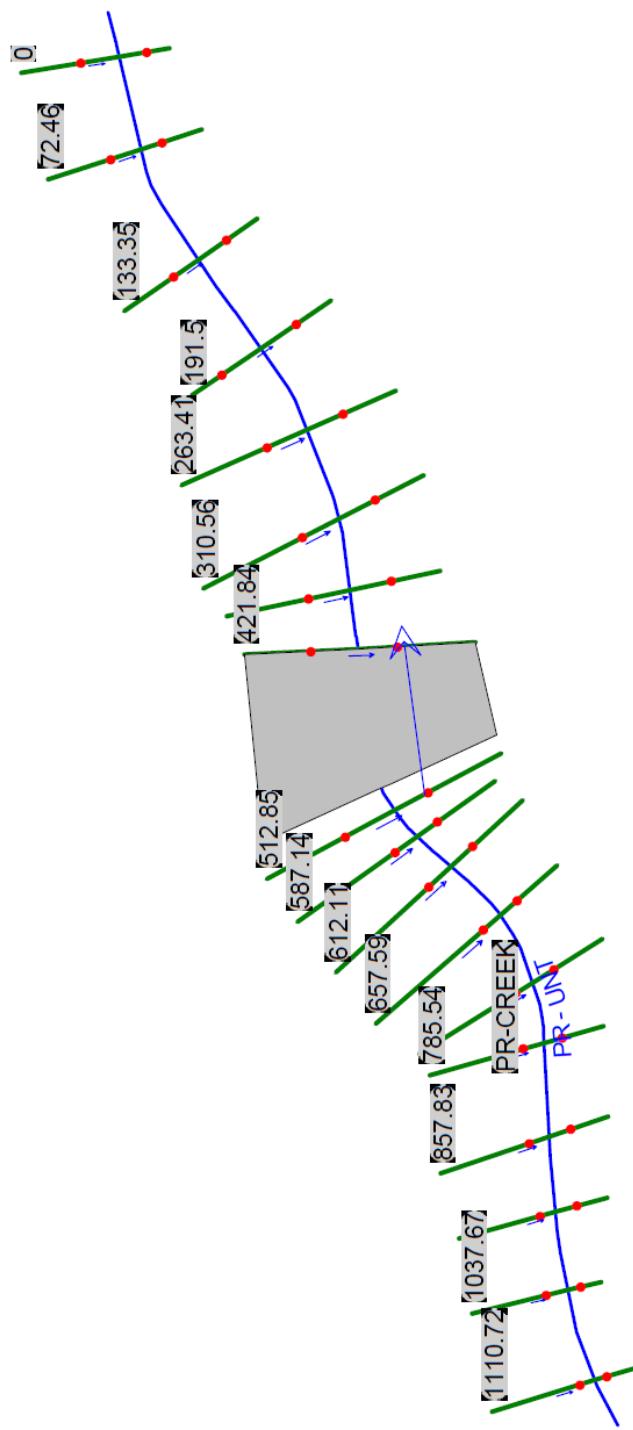
VFS (0.0625 mm to 0.125 mm): 5 %

A typical suspended solid size distribution in the stormwater for high flow conditions (TSS of 20 mg/L when the flow is 191.54 cfs), presented below, was employed as the incoming sediment into the channel:

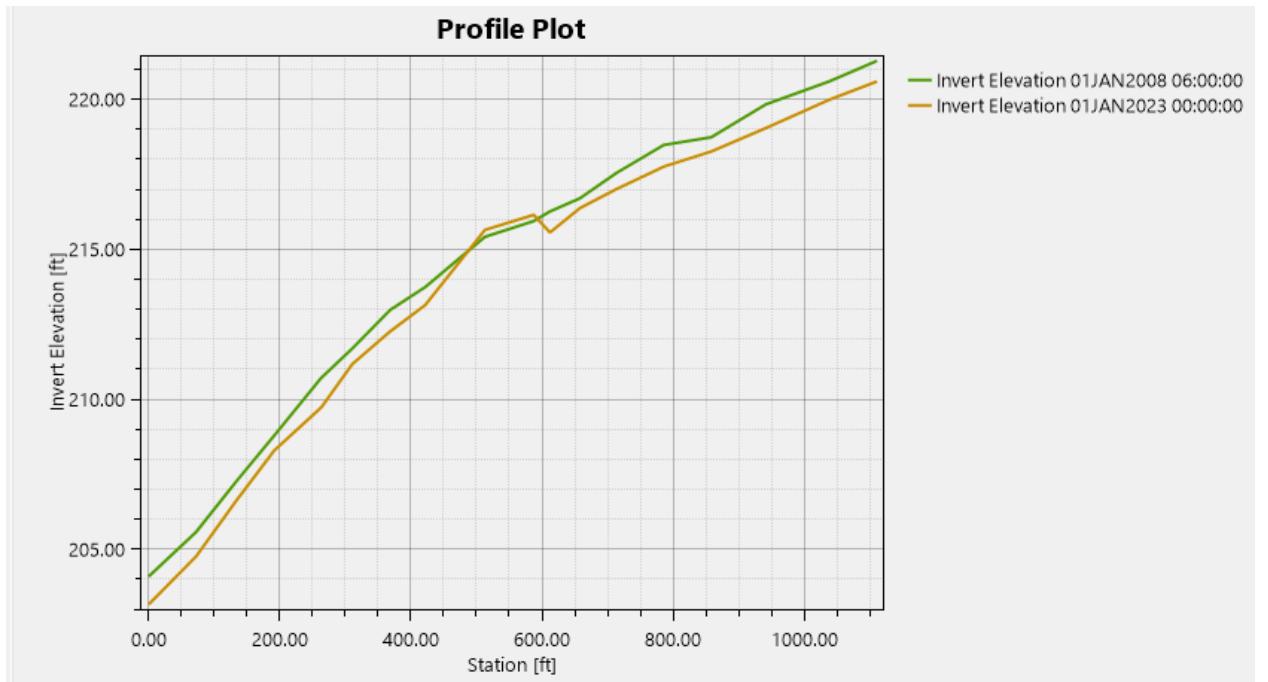
Clay (0.002 mm to 0.004 mm): 15 %

VFM (0.004 mm to 0.008 mm): 15 %

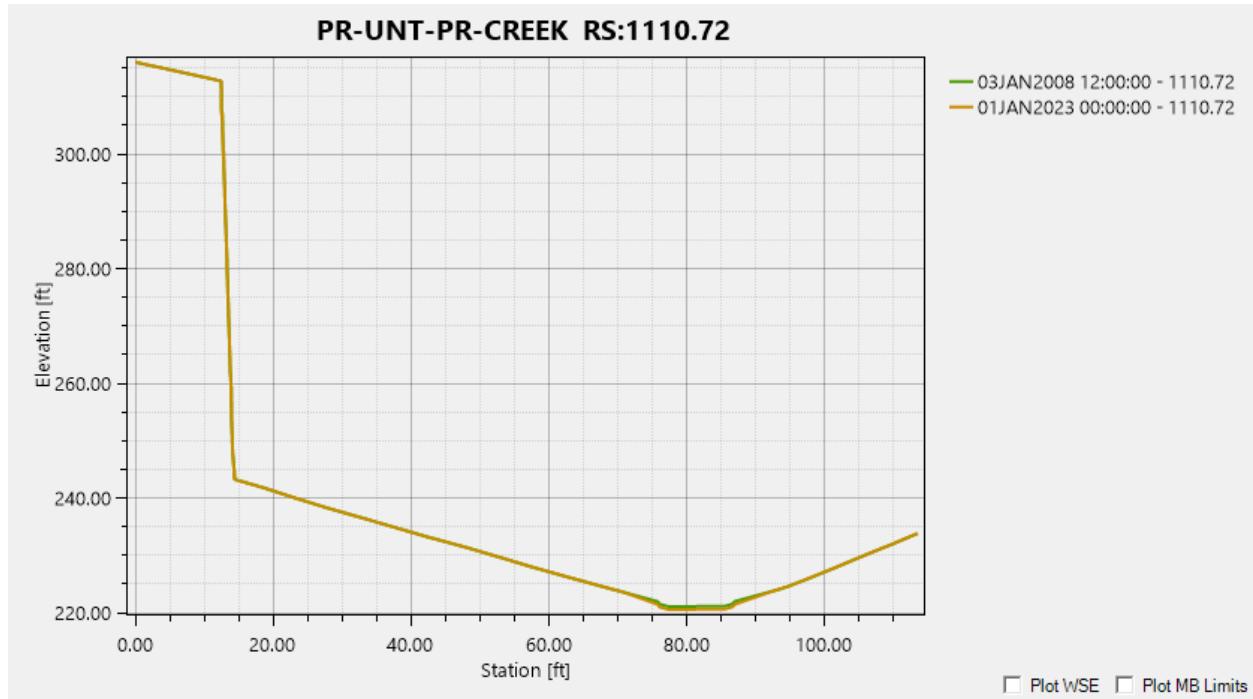
FM (0.008 mm to 0.016 mm): 15 %


MM (0.016 mm to 0.032 mm): 10 %

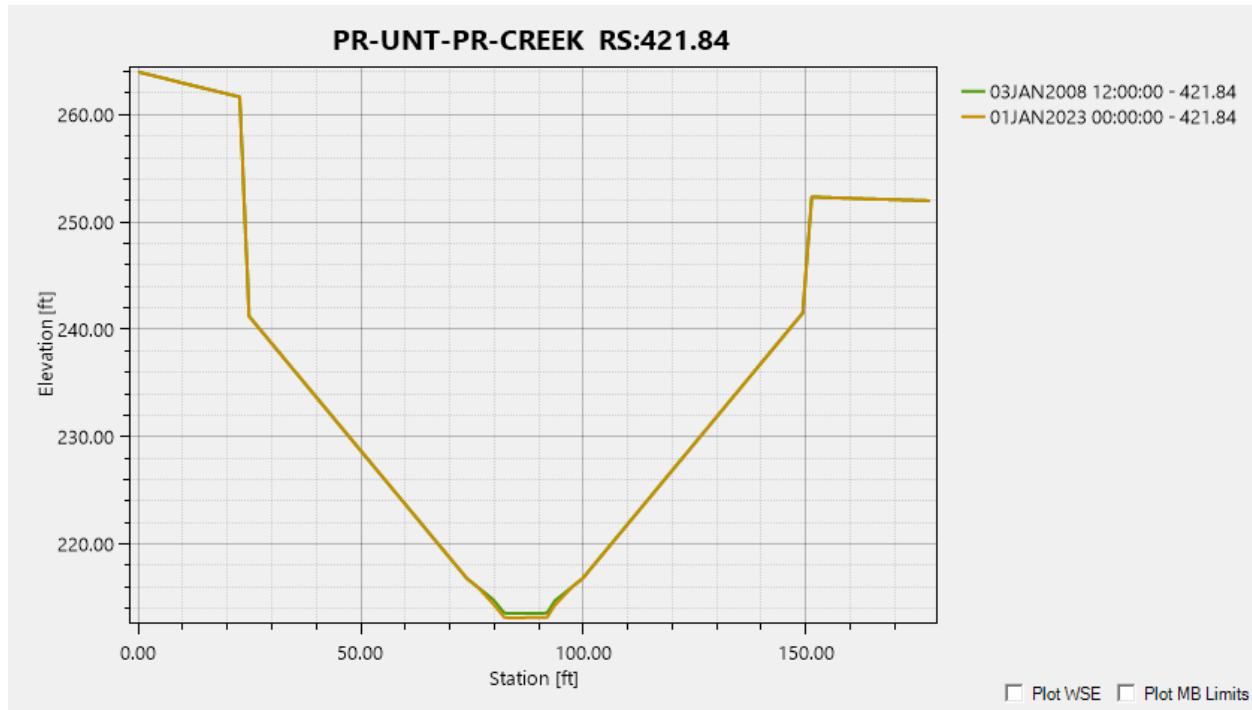
CM (0.032 mm to 0.0625 mm): 20 %


VFS (0.0625 mm to 0.125 mm): 20 %

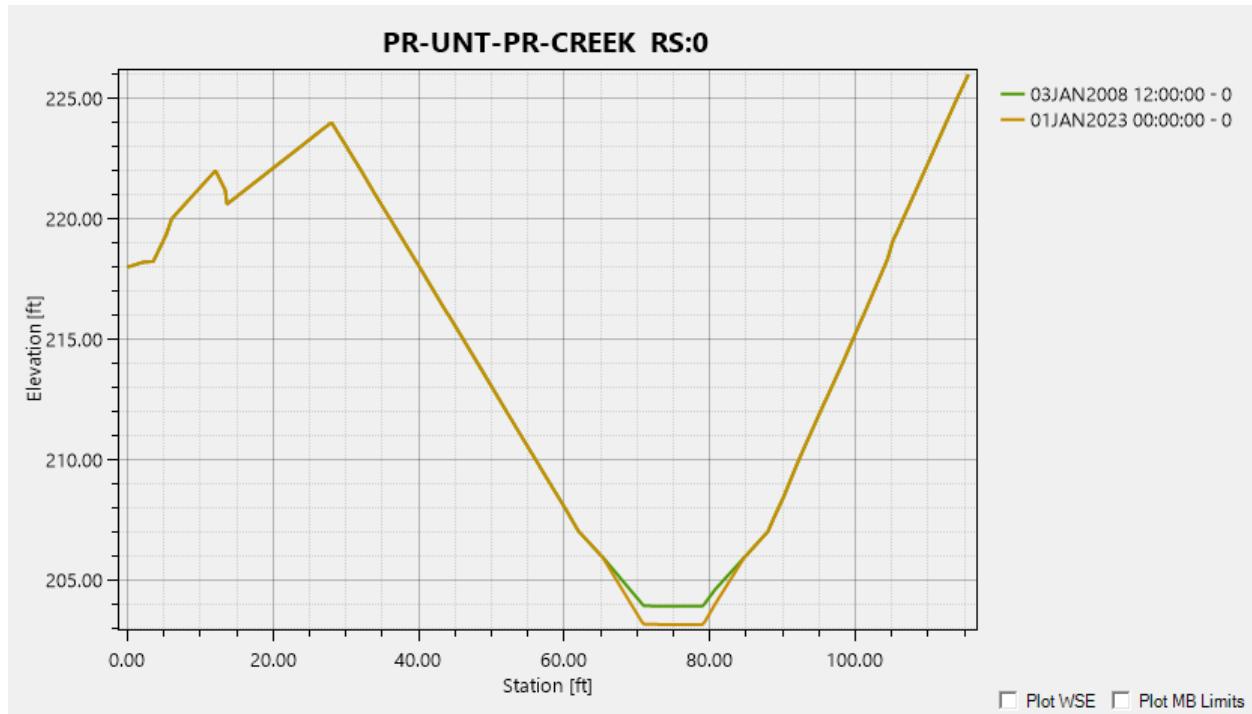
FS (0.125 mm to 0.250 mm): 5 %


The bed and bank material size distribution was determined by iterations in a way that the changes in the cross-section morphology (i.e., erosion/deposition) would be minimal. The upstream boundary condition of sediment transport model was flow data, while it was the normal depth (i.e., in form of slope) for the downstream end. The sediment transport simulation employed backwater analysis for the hydraulic part. A maximum moveable bed of 1' was assumed for the simulation, and the moveable bed was considered at bed as well as at banks up to the main channel elevation. Laursen, Copeland, and Rubey were selected as transport function, sorting method, and settlement velocity method, respectively. An annual average temperature of 55 °F was adopted to estimate water characteristics such as viscosity etc. The flow data was introduced on a daily basis, while the transport model computation increment was set to 6 hours to increase the resolution and accuracy of the simulation. The highlights from the results of 15 years of simulation are summarized in the following figures to illustrate the adequacy of the selected bed gradation.

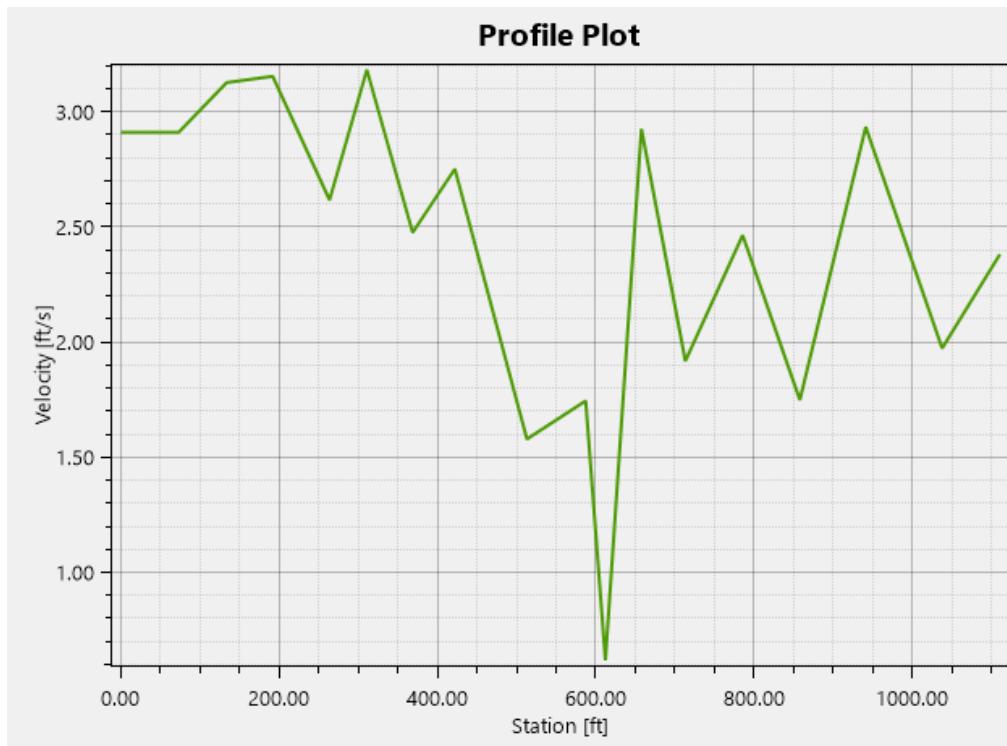



*Plan of relocated channel and cross section labels.*

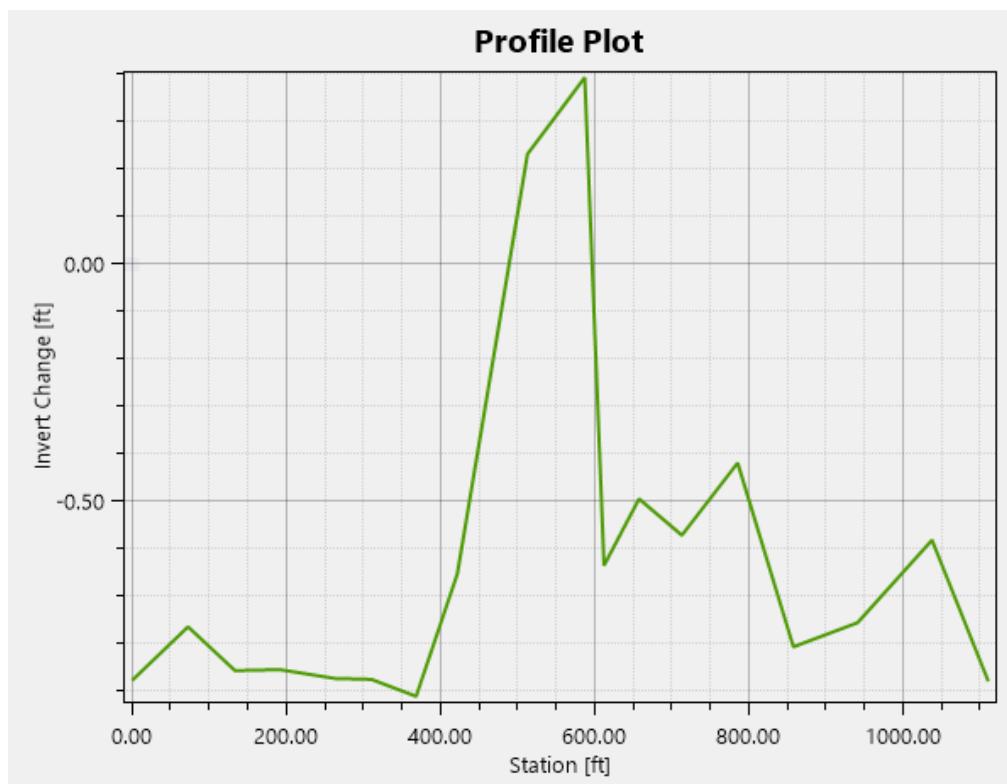



*Profile view of the Invert elevations at the beginning and end of sediment transport simulation.*




*Upstream section view of the Invert elevations at the beginning and end of sediment transport simulation.*




*Immediately downgradient of culvert Invert elevations at the beginning and end of sediment transport simulation.*



*Downstream section view of the Invert elevations at the beginning and end of sediment transport simulation.*



*Profile view of the stream maximum velocities at bed elevation.*



*Profile view of the invert changes after 15 years of simulation.*

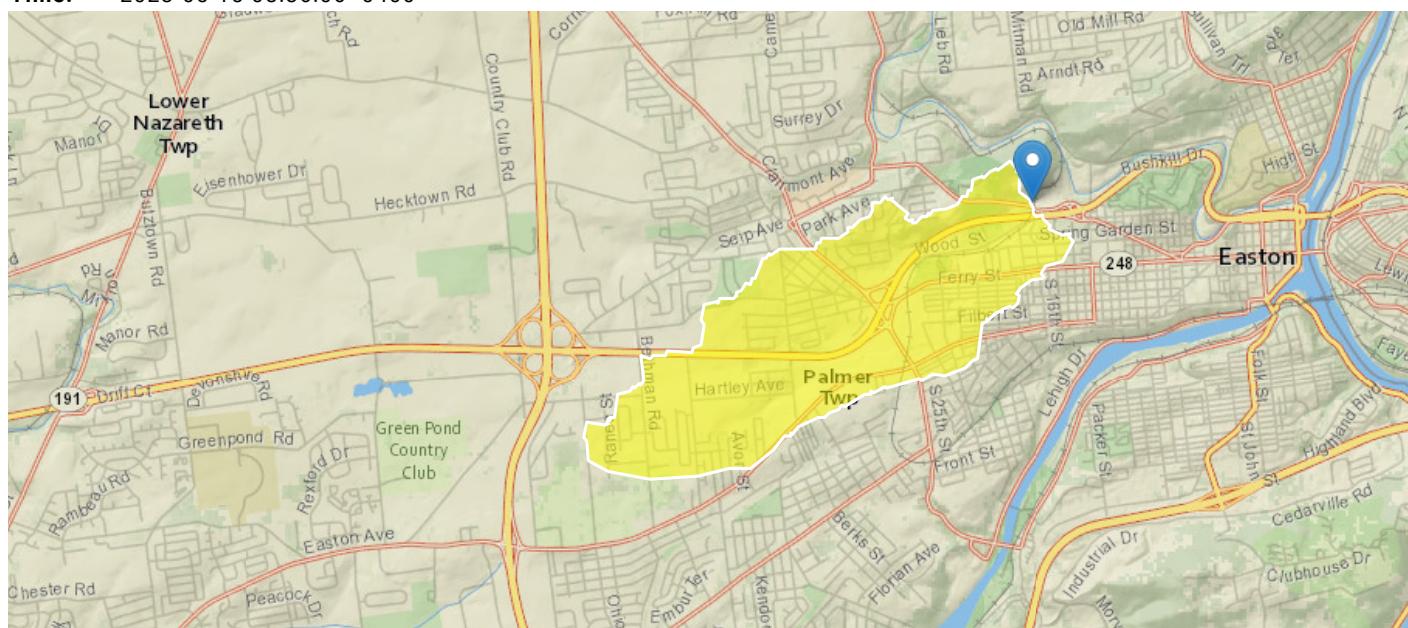
As can be seen through the figures, the elevation change after 15 years of simulation is minimal and is mostly less than 1' scouring. Moreover, the stream velocity profiles at bed elevation indicated that the velocities do not exceed 6.5 ft/s. Table 8-12 of PENNDOT publication 584 (chapter 8; 2010 edition) has reported permissible velocities for various linings. The relocated channel is considered stable because the simulated velocities are below the lowest permissible velocities listed for the riprap lining. It should be noted that the proposed bed material is boulder with a  $d_{50}$  of  $\sim 60\text{mm}$  (2.4") and the following size distribution.



*Size distribution of the proposed bed and banks material (the chart is in mm; 25.4 mm = 1 inch).*

## **Appendix A**

### StreamStats Report


## Bushkill Tributary

Region ID: PA

Workspace ID: PA20230515123543682000

Clicked Point (Latitude, Longitude): 40.69561, -75.23498

Time: 2023-05-15 08:36:06 -0400



[Collapse All](#)

### Basin Characteristics

| Parameter Code | Parameter Description                                              | Value   | Unit                  |
|----------------|--------------------------------------------------------------------|---------|-----------------------|
| CARBON         | Percentage of area of carbonate rock                               | 93.03   | percent               |
| DRNAREA        | Area that drains to a point on a stream                            | 2.32    | square miles          |
| ELEV           | Mean Basin Elevation                                               | 360     | feet                  |
| FOREST         | Percentage of area covered by forest                               | 8.9887  | percent               |
| PRECIP         | Mean Annual Precipitation                                          | 45      | inches                |
| ROCKDEP        | Depth to rock                                                      | 5.4     | feet                  |
| STRDEN         | Stream Density -- total length of streams divided by drainage area | 0       | miles per square mile |
| URBAN          | Percentage of basin with urban development                         | 67.0411 | percent               |

### Peak-Flow Statistics

Peak-Flow Statistics Parameters [Peak Flow Region 3 SIR 2019 5094]

| Parameter Code | Parameter Name    | Value | Units        | Min Limit | Max Limit |
|----------------|-------------------|-------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area     | 2.32  | square miles | 1.42      | 1280      |
| CARBON         | Percent Carbonate | 93.03 | percent      | 0         | 100       |

## Peak-Flow Statistics Flow Report [Peak Flow Region 3 SIR 2019 5094]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

| Statistic             | Value | Unit               | ASEp |
|-----------------------|-------|--------------------|------|
| 50-percent AEP flood  | 96.7  | ft <sup>3</sup> /s | 41.7 |
| 20-percent AEP flood  | 186   | ft <sup>3</sup> /s | 39.6 |
| 10-percent AEP flood  | 266   | ft <sup>3</sup> /s | 38.3 |
| 4-percent AEP flood   | 389   | ft <sup>3</sup> /s | 38.5 |
| 2-percent AEP flood   | 497   | ft <sup>3</sup> /s | 38.9 |
| 1-percent AEP flood   | 621   | ft <sup>3</sup> /s | 40.1 |
| 0.5-percent AEP flood | 760   | ft <sup>3</sup> /s | 41.3 |
| 0.2-percent AEP flood | 973   | ft <sup>3</sup> /s | 43.7 |

*Peak-Flow Statistics Citations*

**Roland, M.A., and Stuckey, M.H., 2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019-5094, 36 p.**  
[\(https://doi.org/10.3133/sir20195094\)](https://doi.org/10.3133/sir20195094)

## ➤ Low-Flow Statistics

## Low-Flow Statistics Parameters [Low Flow Region 2]

| Parameter Code | Parameter Name            | Value | Units                 | Min Limit | Max Limit |
|----------------|---------------------------|-------|-----------------------|-----------|-----------|
| DRNAREA        | Drainage Area             | 2.32  | square miles          | 4.93      | 1280      |
| PRECIP         | Mean Annual Precipitation | 45    | inches                | 35        | 50.4      |
| STRDEN         | Stream Density            | 0     | miles per square mile | 0.51      | 3.1       |
| ROCKDEP        | Depth to Rock             | 5.4   | feet                  | 3.32      | 5.65      |
| CARBON         | Percent Carbonate         | 93.03 | percent               | 0         | 99        |

## Low-Flow Statistics Flow Report [Low Flow Region 2]

| Statistic | Value | Unit |
|-----------|-------|------|
|           |       |      |

*Low-Flow Statistics Citations*

## ➤ Annual Flow Statistics

## Annual Flow Statistics Parameters [Statewide Mean and Base Flow]

| Parameter Code | Parameter Name            | Value | Units        | Min Limit | Max Limit |
|----------------|---------------------------|-------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area             | 2.32  | square miles | 2.26      | 1720      |
| ELEV           | Mean Basin Elevation      | 360   | feet         | 130       | 2700      |
| PRECIP         | Mean Annual Precipitation | 45    | inches       | 33.1      | 50.4      |

| Parameter Code | Parameter Name | Value   | Units   | Min Limit | Max Limit |
|----------------|----------------|---------|---------|-----------|-----------|
| FOREST         | Percent Forest | 8.9887  | percent | 5.1       | 100       |
| URBAN          | Percent Urban  | 67.0411 | percent | 0         | 89        |

### Annual Flow Statistics Flow Report [Statewide Mean and Base Flow]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

| Statistic        | Value | Unit   | SE | ASEp |
|------------------|-------|--------|----|------|
| Mean Annual Flow | 3.43  | ft^3/s | 12 | 12   |

#### Annual Flow Statistics Citations

**Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)**

## ➤ General Flow Statistics

### General Flow Statistics Parameters [Statewide Mean and Base Flow]

| Parameter Code | Parameter Name            | Value   | Units        | Min Limit | Max Limit |
|----------------|---------------------------|---------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area             | 2.32    | square miles | 2.26      | 1720      |
| PRECIP         | Mean Annual Precipitation | 45      | inches       | 33.1      | 50.4      |
| CARBON         | Percent Carbonate         | 93.03   | percent      | 0         | 99        |
| FOREST         | Percent Forest            | 8.9887  | percent      | 5.1       | 100       |
| URBAN          | Percent Urban             | 67.0411 | percent      | 0         | 89        |

### General Flow Statistics Flow Report [Statewide Mean and Base Flow]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

| Statistic                | Value | Unit   | SE | ASEp |
|--------------------------|-------|--------|----|------|
| Harmonic Mean Streamflow | 4.46  | ft^3/s | 38 | 38   |

#### General Flow Statistics Citations

**Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)**

## ➤ Base Flow Statistics

### Base Flow Statistics Parameters [Statewide Mean and Base Flow]

| Parameter Code | Parameter Name            | Value  | Units        | Min Limit | Max Limit |
|----------------|---------------------------|--------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area             | 2.32   | square miles | 2.26      | 1720      |
| PRECIP         | Mean Annual Precipitation | 45     | inches       | 33.1      | 50.4      |
| CARBON         | Percent Carbonate         | 93.03  | percent      | 0         | 99        |
| FOREST         | Percent Forest            | 8.9887 | percent      | 5.1       | 100       |

| Parameter Code | Parameter Name | Value   | Units   | Min Limit | Max Limit |
|----------------|----------------|---------|---------|-----------|-----------|
| URBAN          | Percent Urban  | 67.0411 | percent | 0         | 89        |

### Base Flow Statistics Flow Report [Statewide Mean and Base Flow]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

| Statistic                             | Value | Unit   | SE | ASEp |
|---------------------------------------|-------|--------|----|------|
| Base Flow 10 Year Recurrence Interval | 2     | ft^3/s | 21 | 21   |
| Base Flow 25 Year Recurrence Interval | 1.78  | ft^3/s | 21 | 21   |
| Base Flow 50 Year Recurrence Interval | 1.66  | ft^3/s | 23 | 23   |

#### Base Flow Statistics Citations

**Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)**

## ➤ Bankfull Statistics

### Bankfull Statistics Parameters [Statewide Bankfull Carbonate 2018 5066]

| Parameter Code | Parameter Name    | Value | Units        | Min Limit | Max Limit |
|----------------|-------------------|-------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area     | 2.32  | square miles | 18.9      | 213       |
| CARBON         | Percent Carbonate | 93.03 | percent      |           |           |

### Bankfull Statistics Parameters [Appalachian Highlands D Bieger 2015]

| Parameter Code | Parameter Name | Value | Units        | Min Limit | Max Limit |
|----------------|----------------|-------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area  | 2.32  | square miles | 0.07722   | 940.1535  |

### Bankfull Statistics Parameters [New England P Bieger 2015]

| Parameter Code | Parameter Name | Value | Units        | Min Limit | Max Limit  |
|----------------|----------------|-------|--------------|-----------|------------|
| DRNAREA        | Drainage Area  | 2.32  | square miles | 3.799224  | 138.999861 |

### Bankfull Statistics Parameters [USA Bieger 2015]

| Parameter Code | Parameter Name | Value | Units        | Min Limit | Max Limit  |
|----------------|----------------|-------|--------------|-----------|------------|
| DRNAREA        | Drainage Area  | 2.32  | square miles | 0.07722   | 59927.7393 |

### Bankfull Statistics Disclaimers [Statewide Bankfull Carbonate 2018 5066]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

### Bankfull Statistics Flow Report [Statewide Bankfull Carbonate 2018 5066]

| Statistic           | Value | Unit   |
|---------------------|-------|--------|
| Bankfull Area       | 5.58  | ft^2   |
| Bankfull Streamflow | 12.5  | ft^3/s |

| Statistic      | Value | Unit |
|----------------|-------|------|
| Bankfull Width | 8.34  | ft   |
| Bankfull Depth | 0.697 | ft   |

## Bankfull Statistics Flow Report [Appalachian Highlands D Bieger 2015]

| Statistic                             | Value | Unit            |
|---------------------------------------|-------|-----------------|
| Bieger_D_channel_width                | 21.5  | ft              |
| Bieger_D_channel_depth                | 1.43  | ft              |
| Bieger_D_channel_cross_sectional_area | 31.2  | ft <sup>2</sup> |

## Bankfull Statistics Disclaimers [New England P Bieger 2015]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

## Bankfull Statistics Flow Report [New England P Bieger 2015]

| Statistic                             | Value | Unit            |
|---------------------------------------|-------|-----------------|
| Bieger_P_channel_width                | 32    | ft              |
| Bieger_P_channel_depth                | 1.66  | ft              |
| Bieger_P_channel_cross_sectional_area | 53.2  | ft <sup>2</sup> |

## Bankfull Statistics Flow Report [USA Bieger 2015]

| Statistic                               | Value | Unit            |
|-----------------------------------------|-------|-----------------|
| Bieger_USA_channel_width                | 16.7  | ft              |
| Bieger_USA_channel_depth                | 1.44  | ft              |
| Bieger_USA_channel_cross_sectional_area | 26.9  | ft <sup>2</sup> |

## Bankfull Statistics Flow Report [Area-Averaged]

| Statistic                               | Value | Unit               |
|-----------------------------------------|-------|--------------------|
| Bankfull Area                           | 5.58  | ft <sup>2</sup>    |
| Bankfull Streamflow                     | 12.5  | ft <sup>3</sup> /s |
| Bankfull Width                          | 8.34  | ft                 |
| Bankfull Depth                          | 0.697 | ft                 |
| Bieger_D_channel_width                  | 21.5  | ft                 |
| Bieger_D_channel_depth                  | 1.43  | ft                 |
| Bieger_D_channel_cross_sectional_area   | 31.2  | ft <sup>2</sup>    |
| Bieger_P_channel_width                  | 32    | ft                 |
| Bieger_P_channel_depth                  | 1.66  | ft                 |
| Bieger_P_channel_cross_sectional_area   | 53.2  | ft <sup>2</sup>    |
| Bieger_USA_channel_width                | 16.7  | ft                 |
| Bieger_USA_channel_depth                | 1.44  | ft                 |
| Bieger_USA_channel_cross_sectional_area | 26.9  | ft <sup>2</sup>    |

***Bankfull Statistics Citations***

**Clune, J.W., Chaplin, J.J., and White, K.E., 2018, Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York: U.S. Geological Survey Scientific Investigations Report 2018-5066, 20 p. (<https://doi.org/10.3133/sir20185066>)**  
**Bieger, Katrin; Rathjens, Hendrik; Allen, Peter M.; and Arnold, Jeffrey G., 2015, Development and Evaluation of Bankfull Hydraulic Geometry Relationships for the Physiographic Regions of the United States, Publications from USDA-ARS / UNL Faculty, 17p. ([https://digitalcommons.unl.edu/usdaarsfacpub/1515?utm\\_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F1515&utm\\_medium=PDF&utm\\_campaign=PDFCoverPages](https://digitalcommons.unl.edu/usdaarsfacpub/1515?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F1515&utm_medium=PDF&utm_campaign=PDFCoverPages))**

## ➤ Maximum Probable Flood Statistics

### Maximum Probable Flood Statistics Parameters [Crippen Bue Region 4]

| Parameter Code | Parameter Name | Value | Units        | Min Limit | Max Limit |
|----------------|----------------|-------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area  | 2.32  | square miles | 0.1       | 10000     |

### Maximum Probable Flood Statistics Flow Report [Crippen Bue Region 4]

| Statistic                          | Value | Unit   |
|------------------------------------|-------|--------|
| Maximum Flood Crippen Bue Regional | 7790  | ft^3/s |

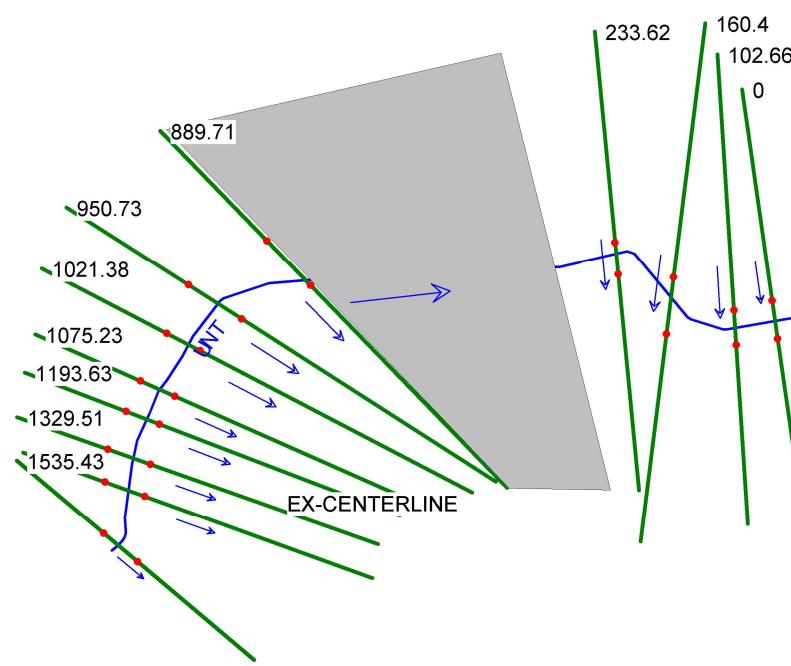
### *Maximum Probable Flood Statistics Citations*

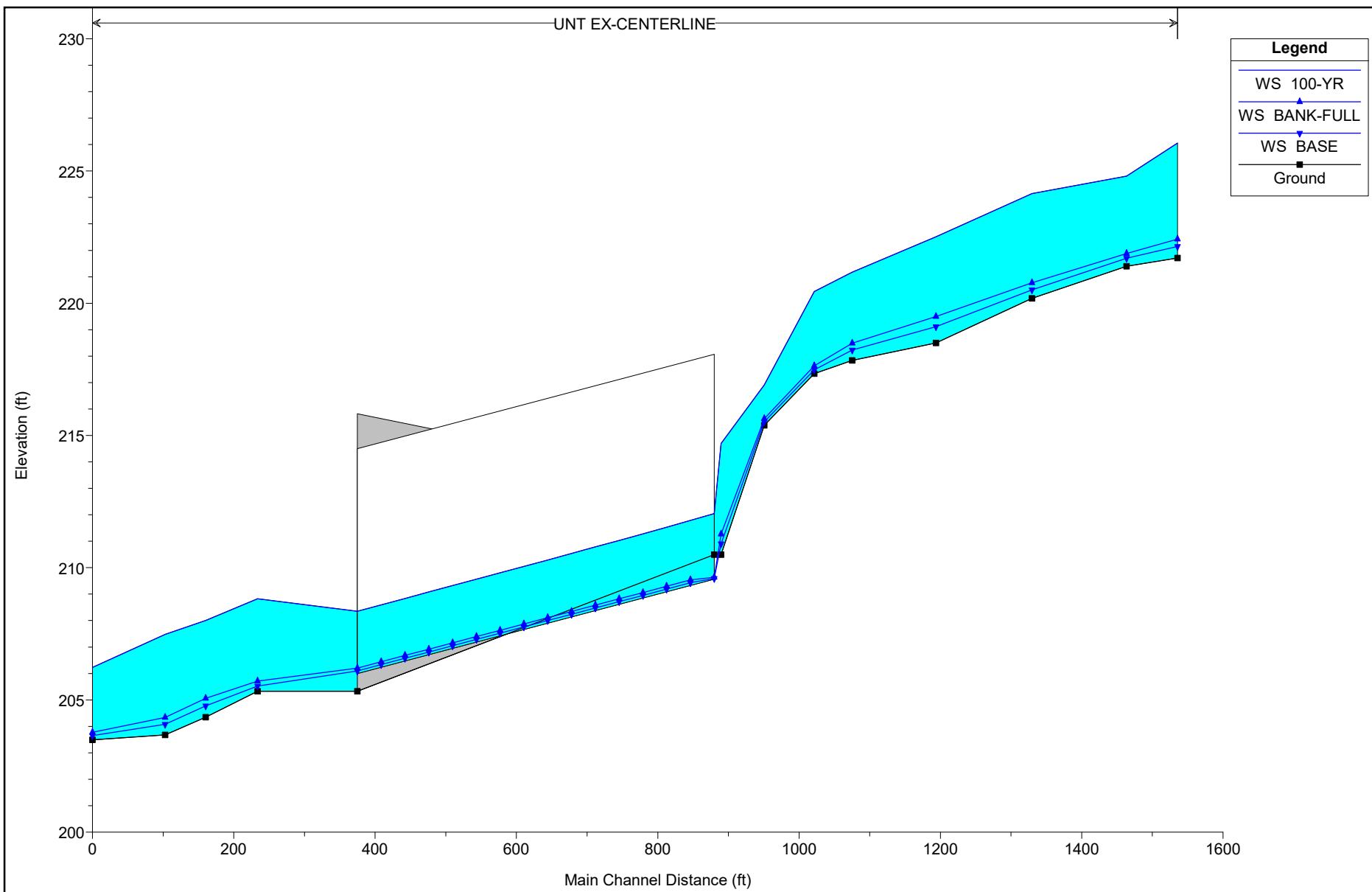
**Crippen, J.R. and Bue, Conrad D.1977, Maximum Floodflows in the Conterminous United States, Geological Survey Water-Supply Paper 1887, 52p. (<https://pubs.usgs.gov/wsp/1887/report.pdf>)**

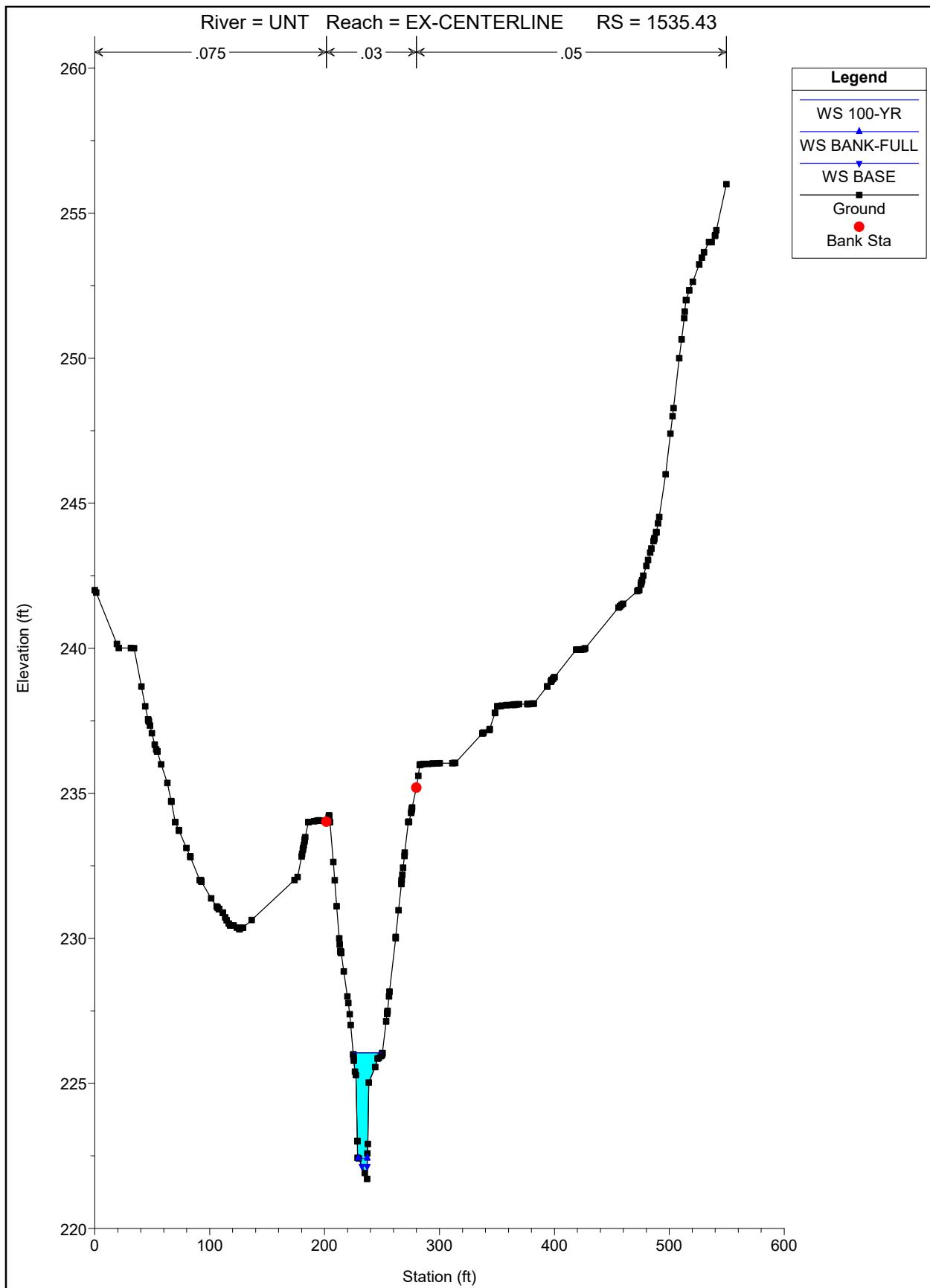
USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

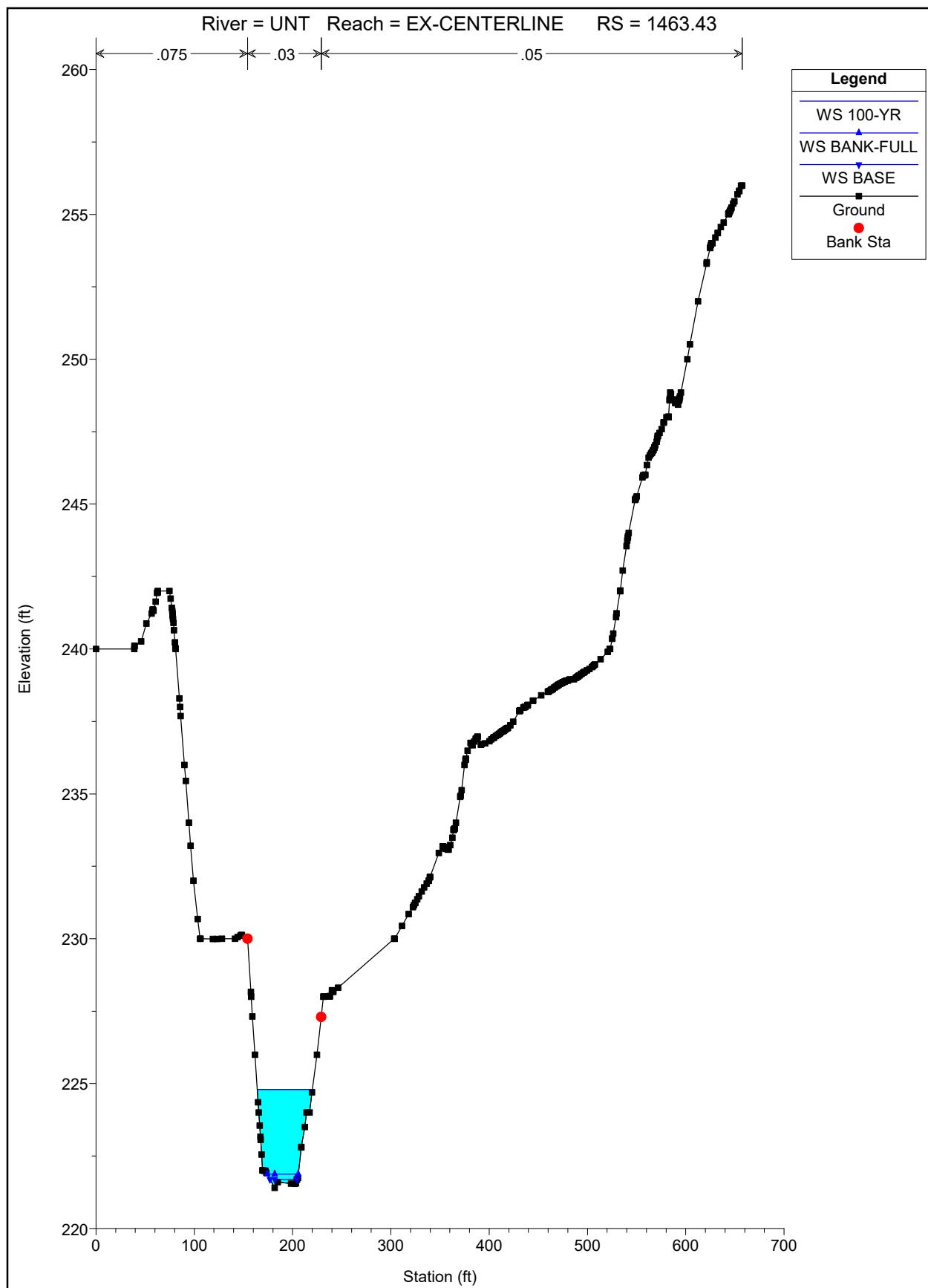
USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

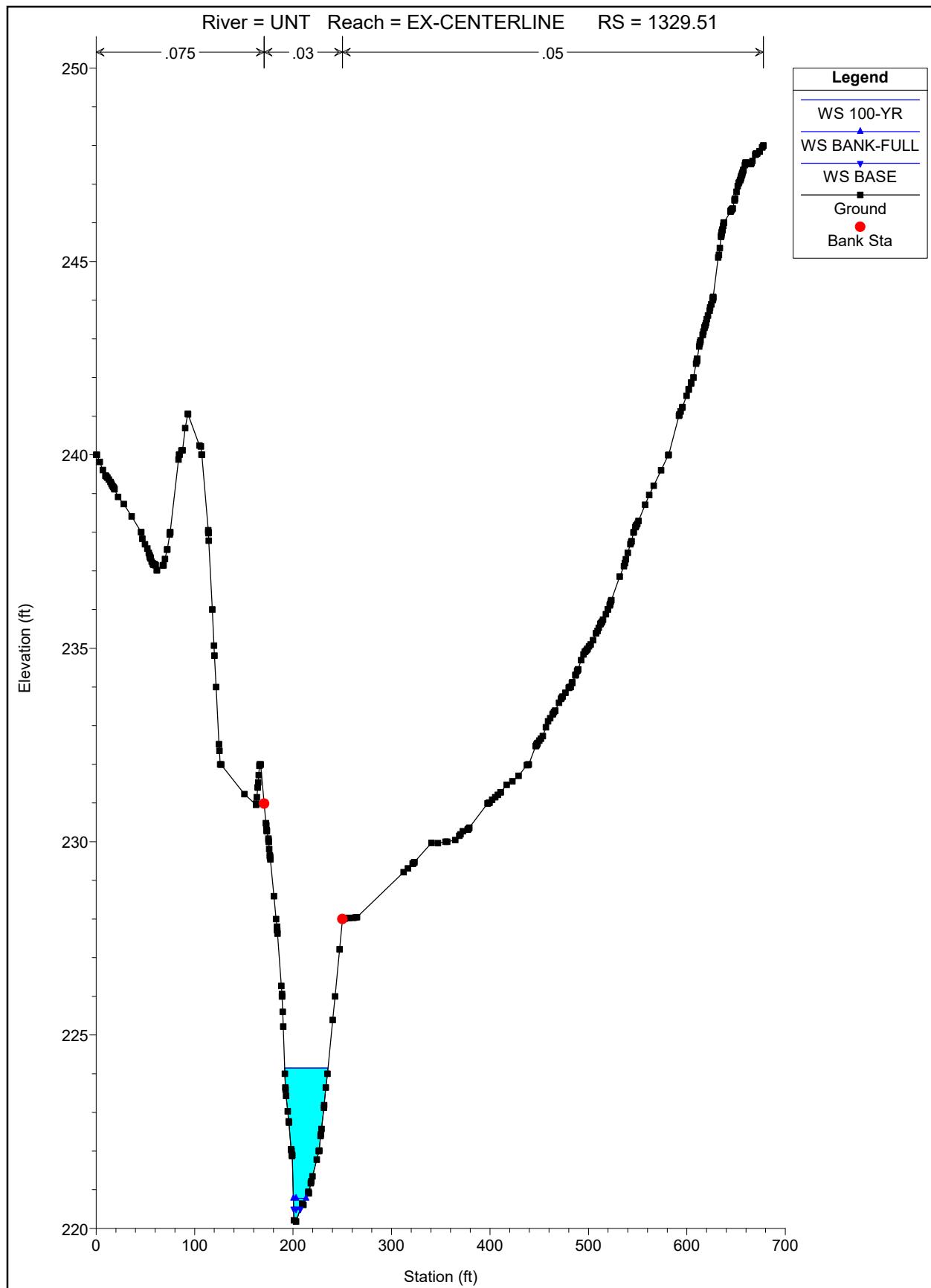
USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

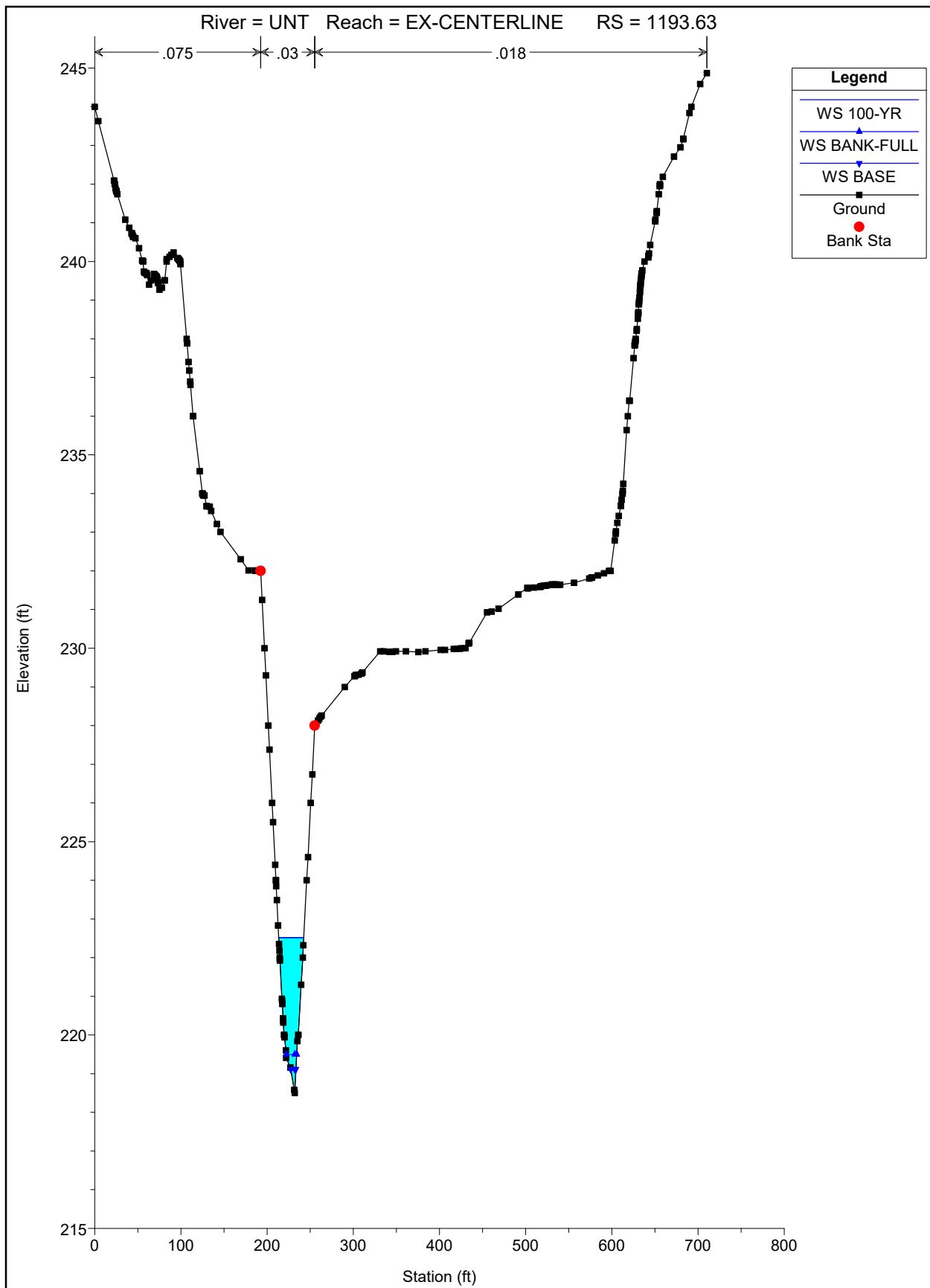

Application Version: 4.14.0

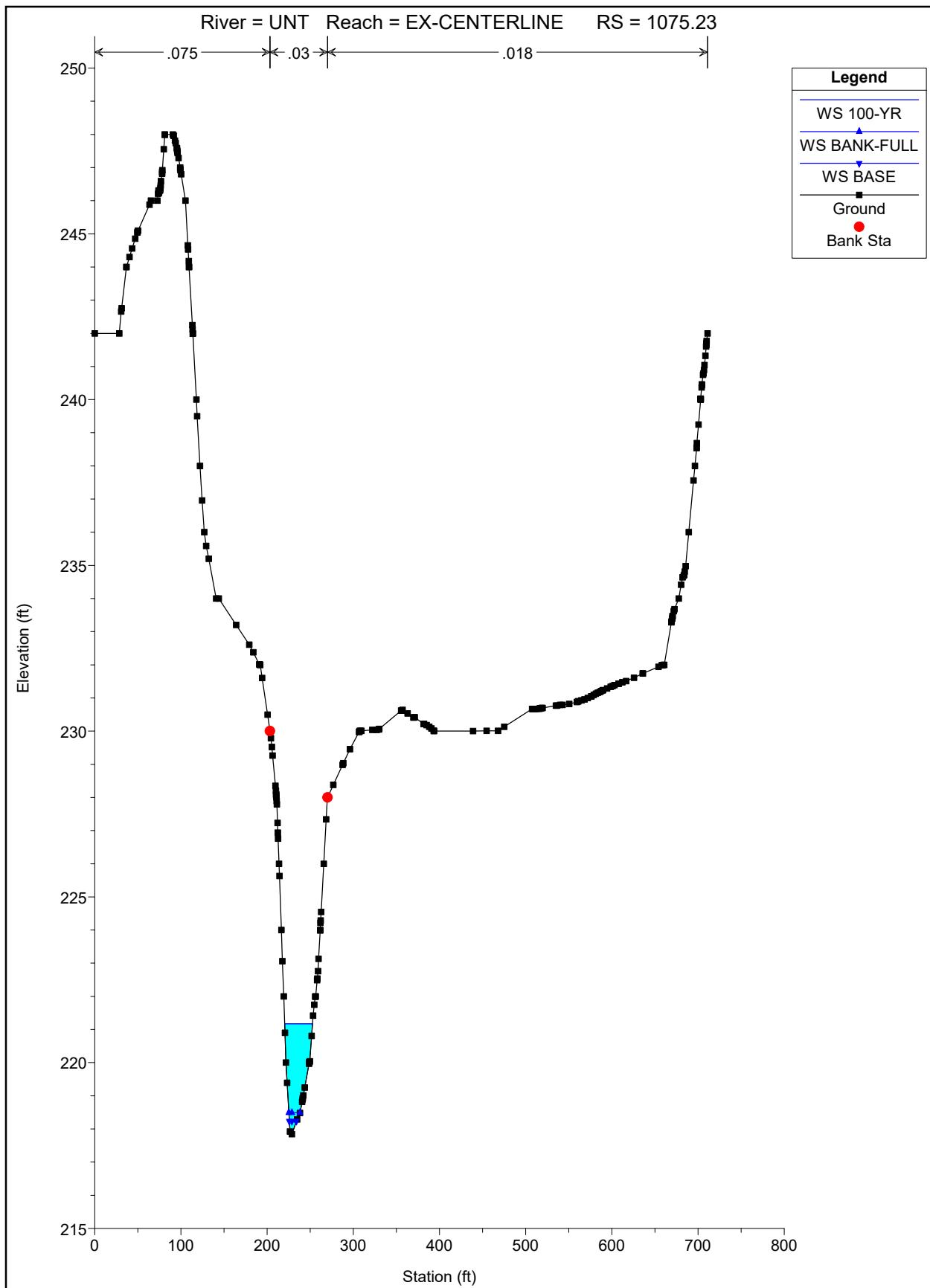

StreamStats Services Version: 1.2.22

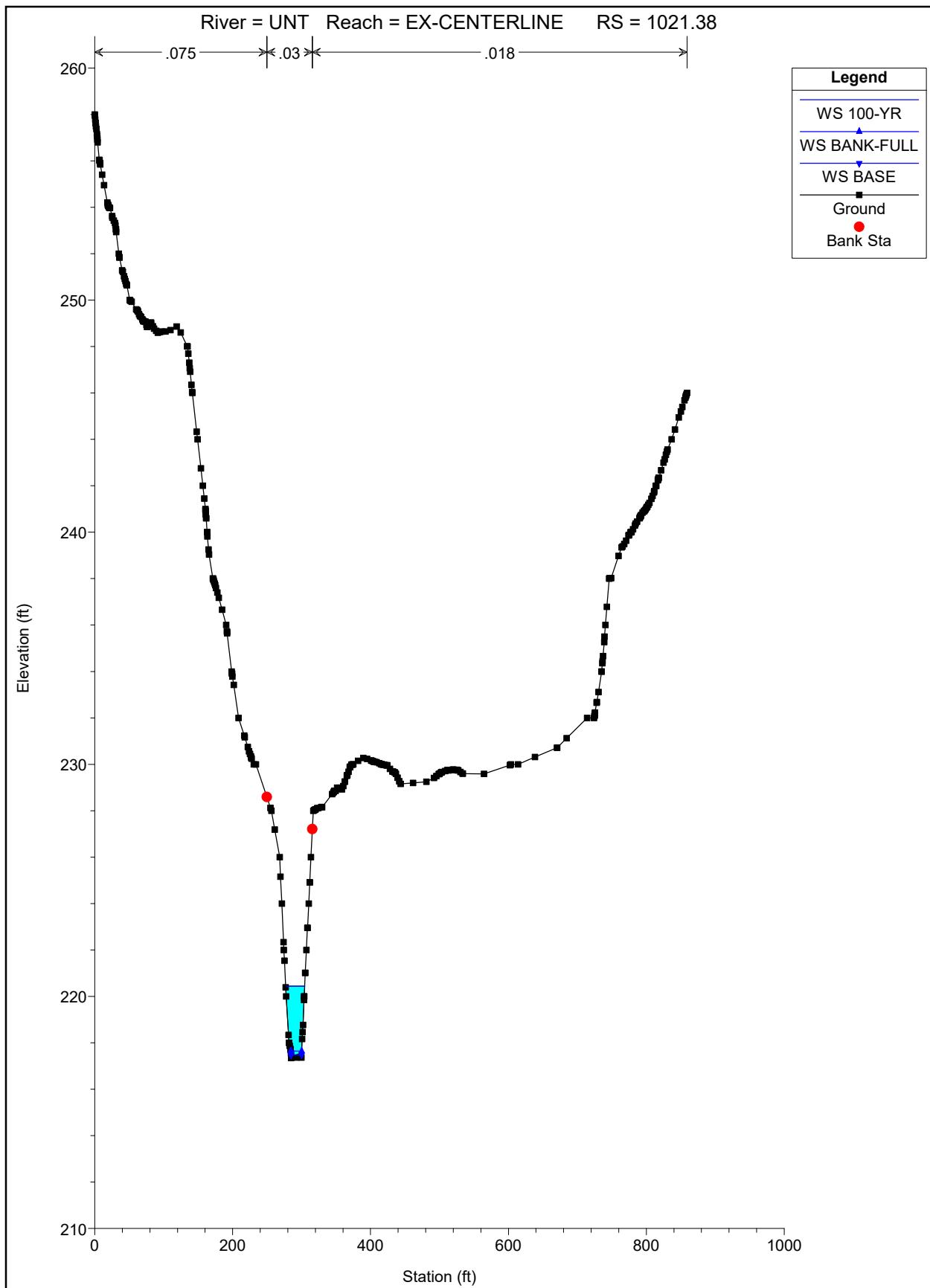

NSS Services Version: 2.2.1

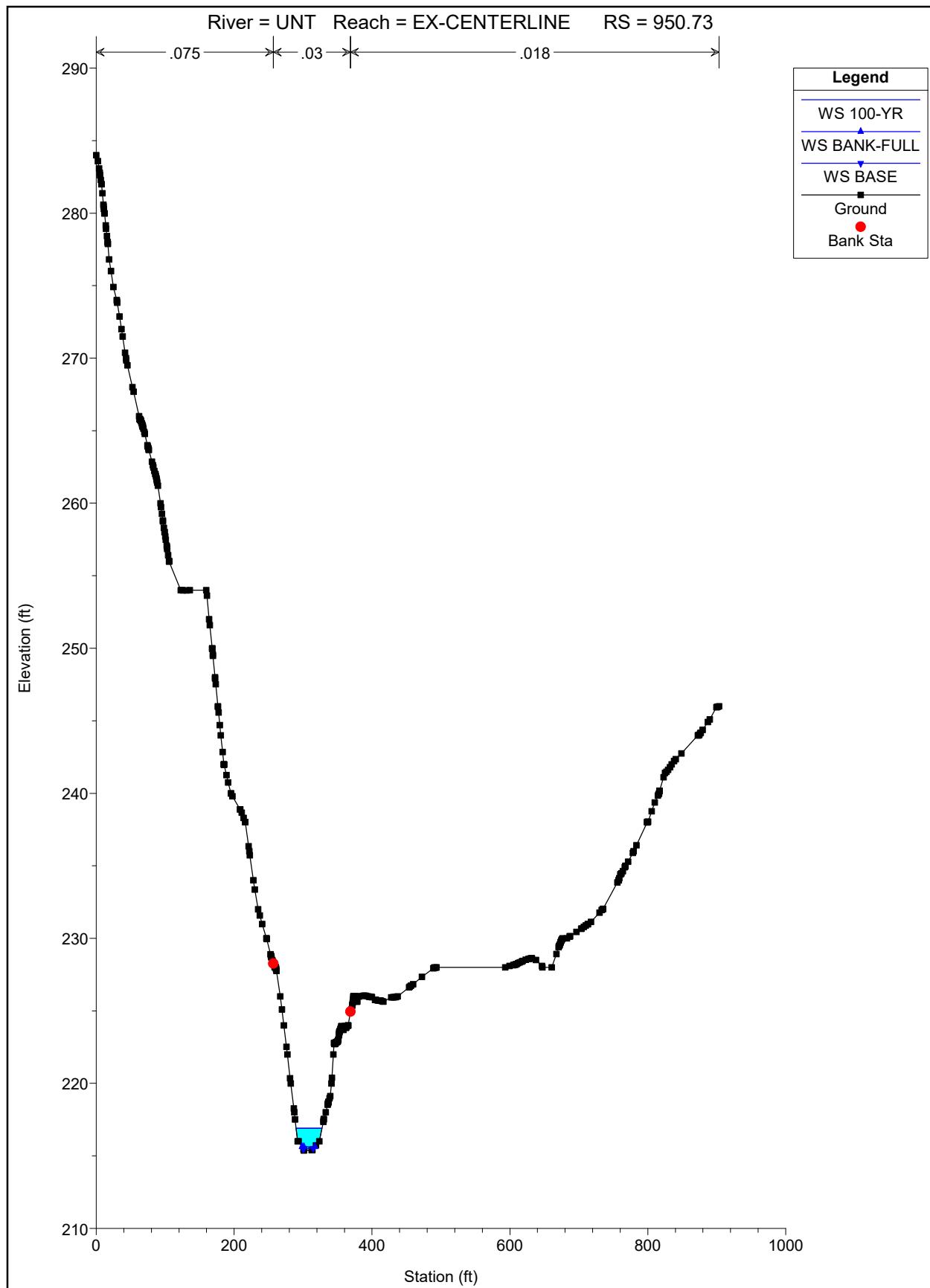

## **Appendix B**

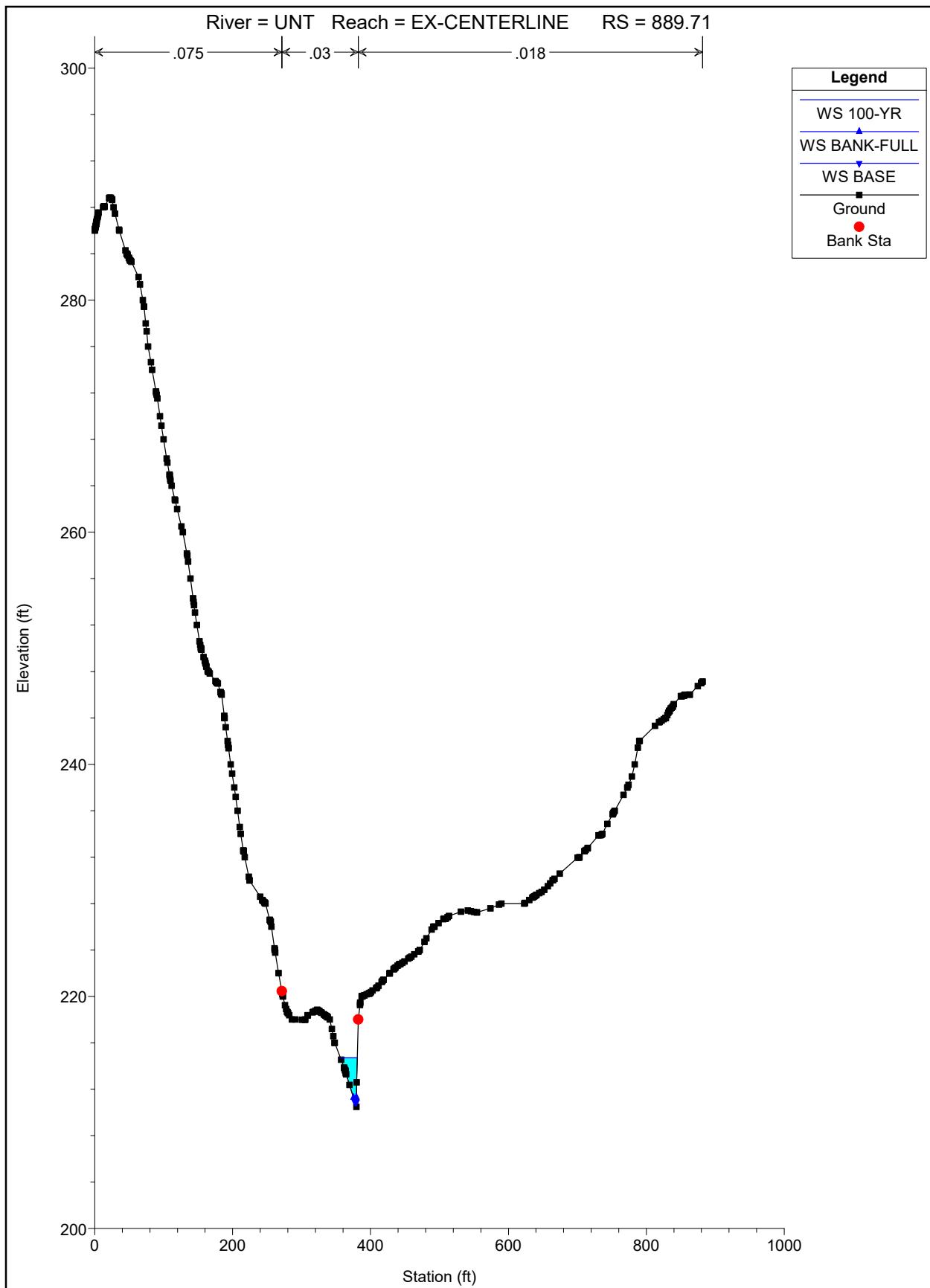

HEC-RAS Outputs for Existing Condition

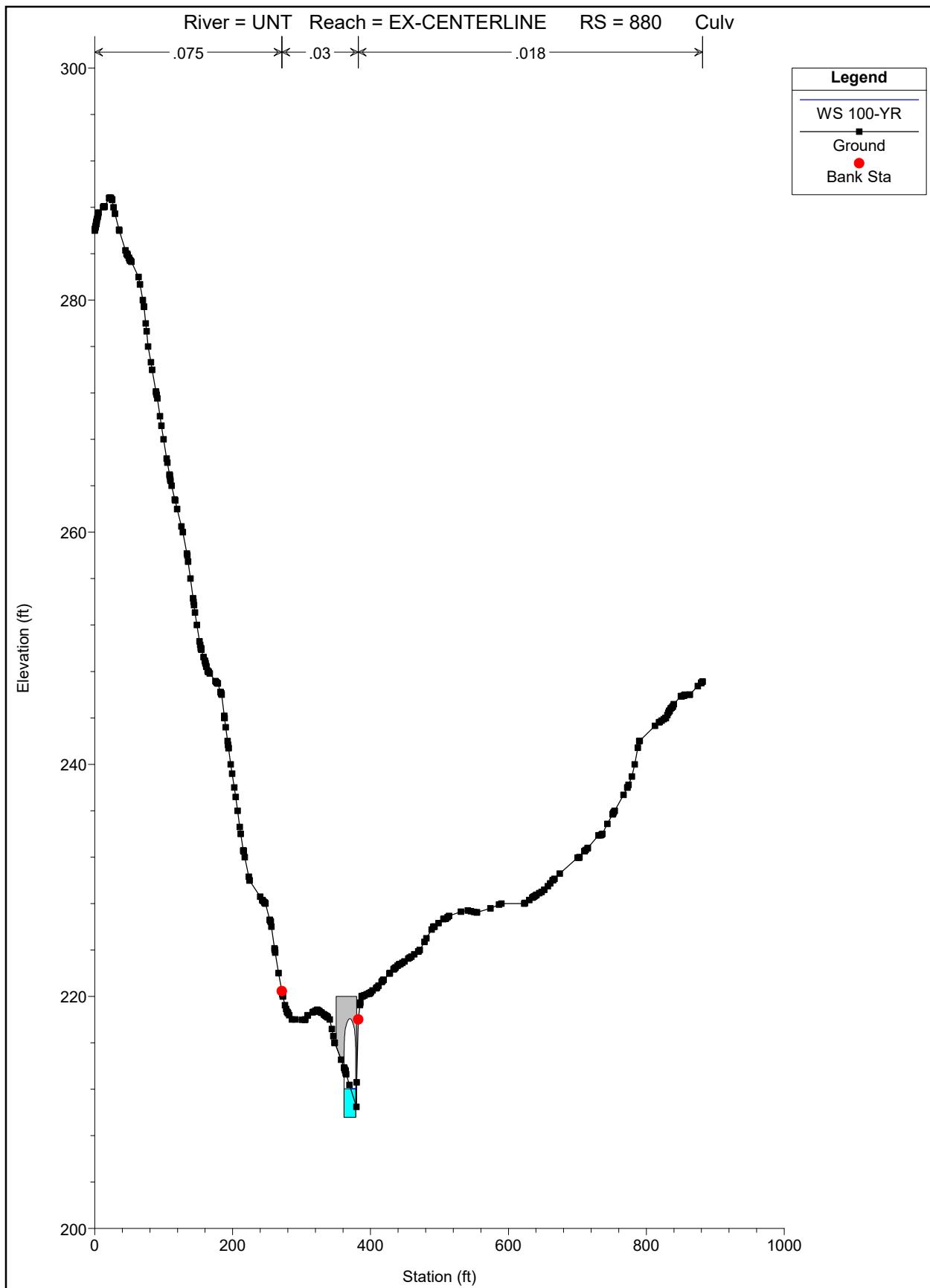


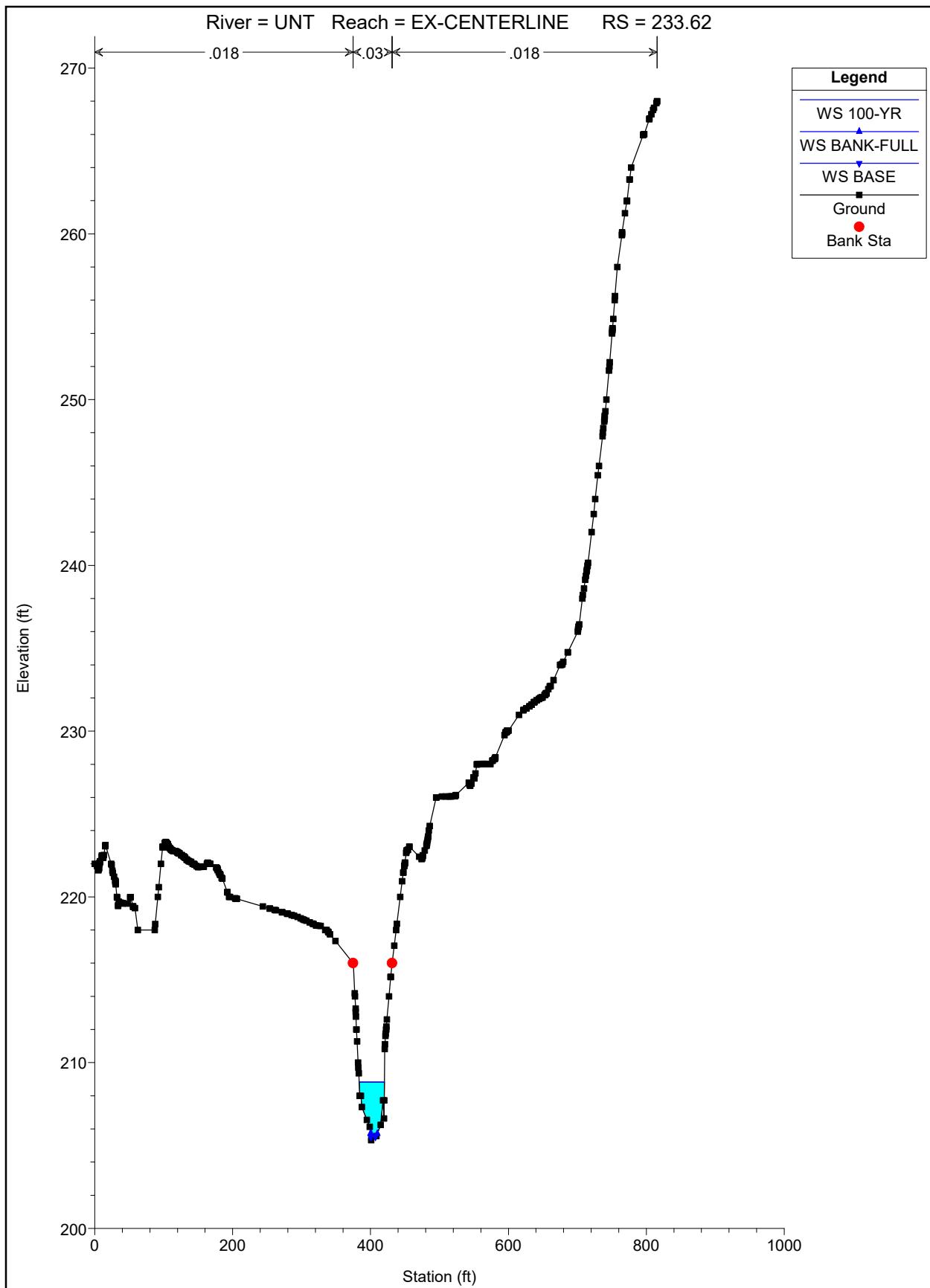



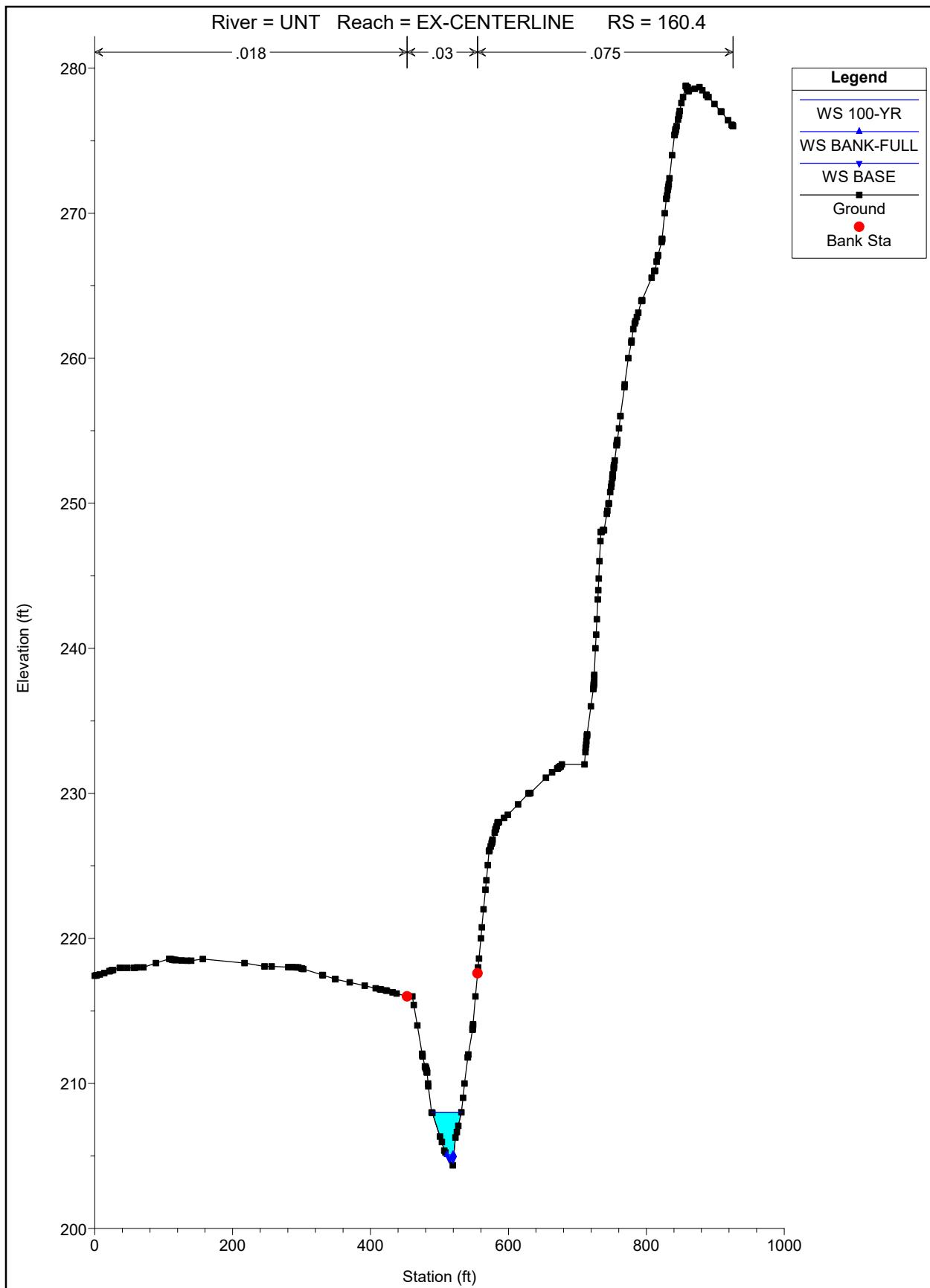



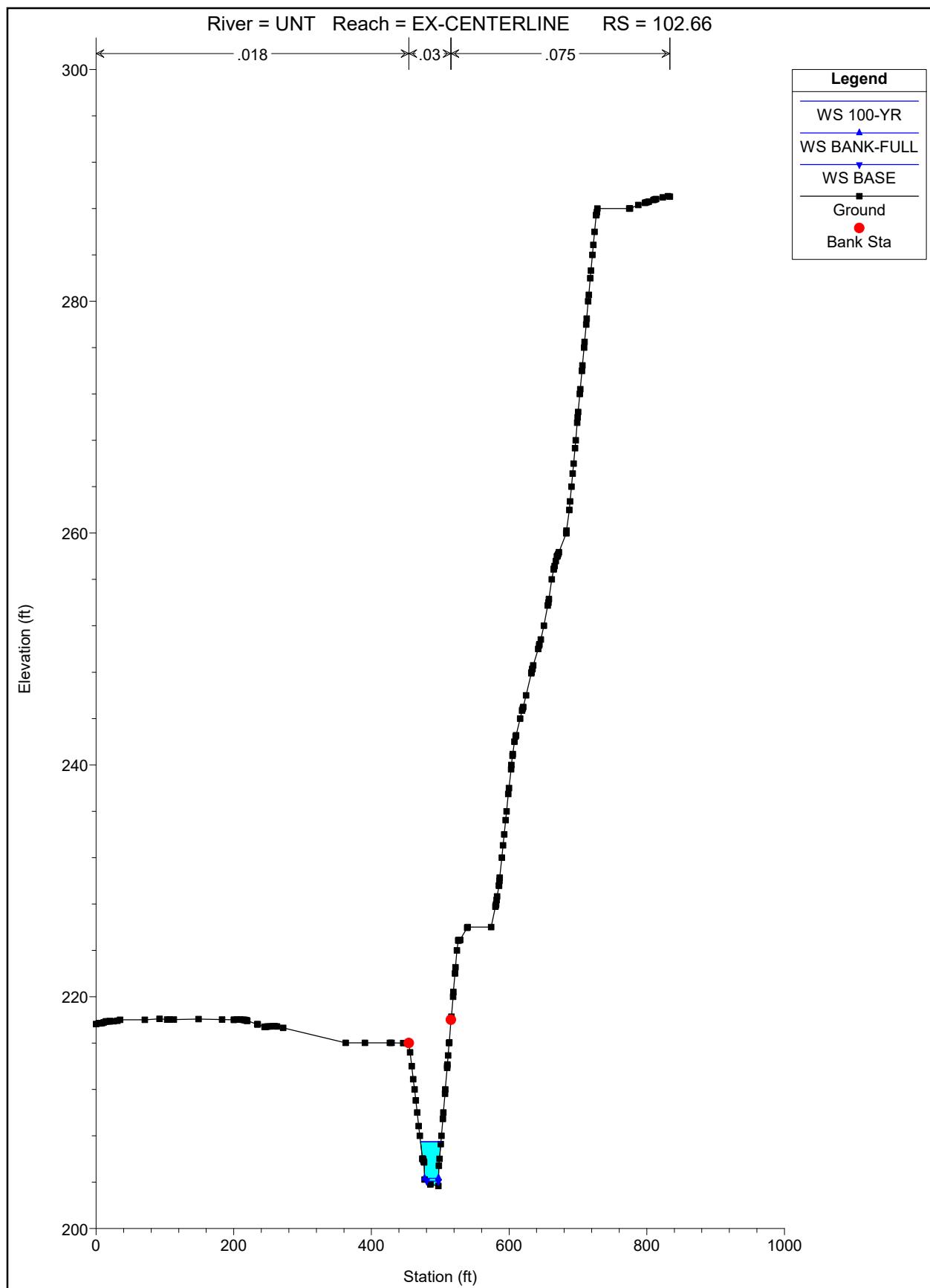



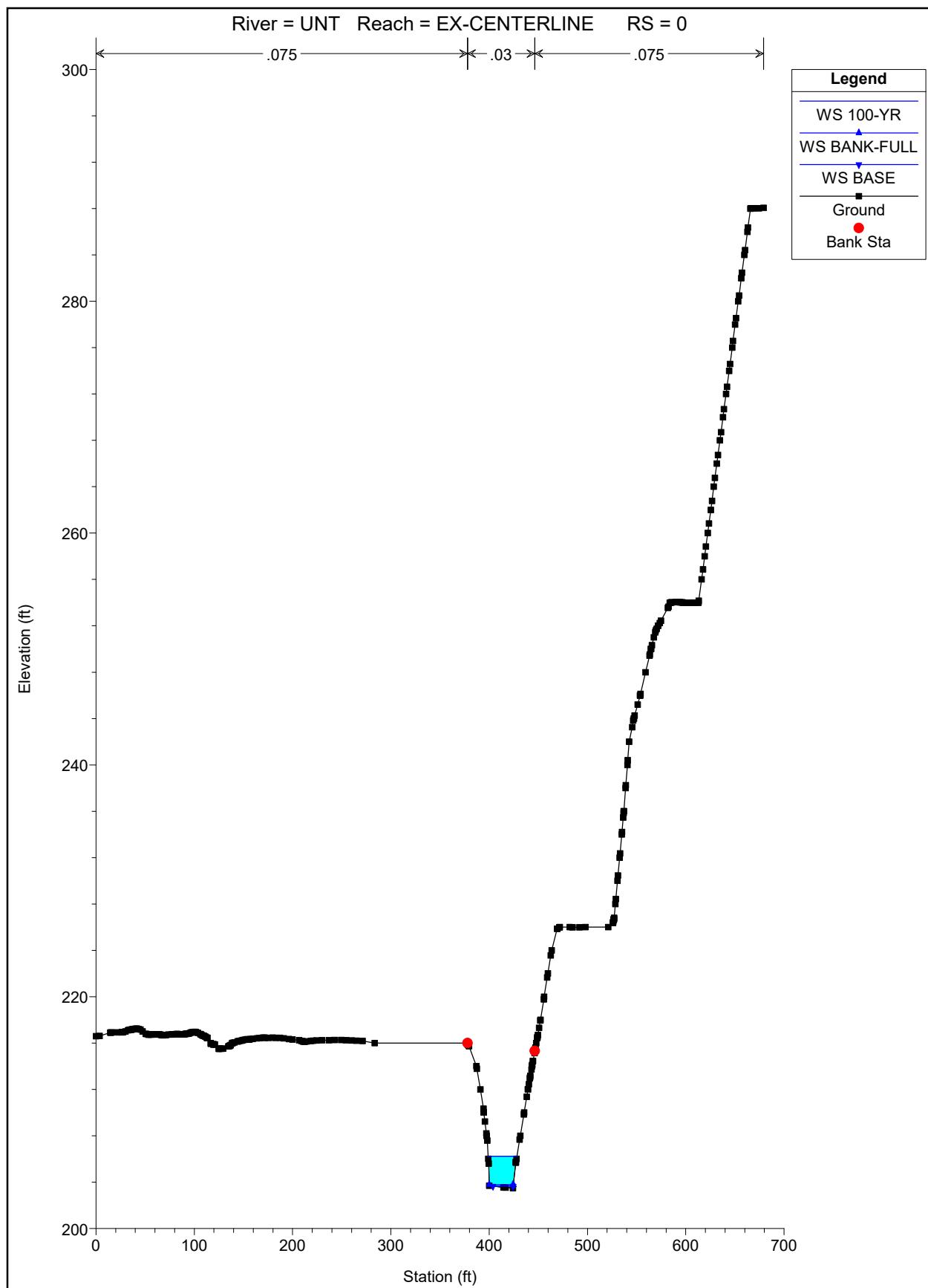













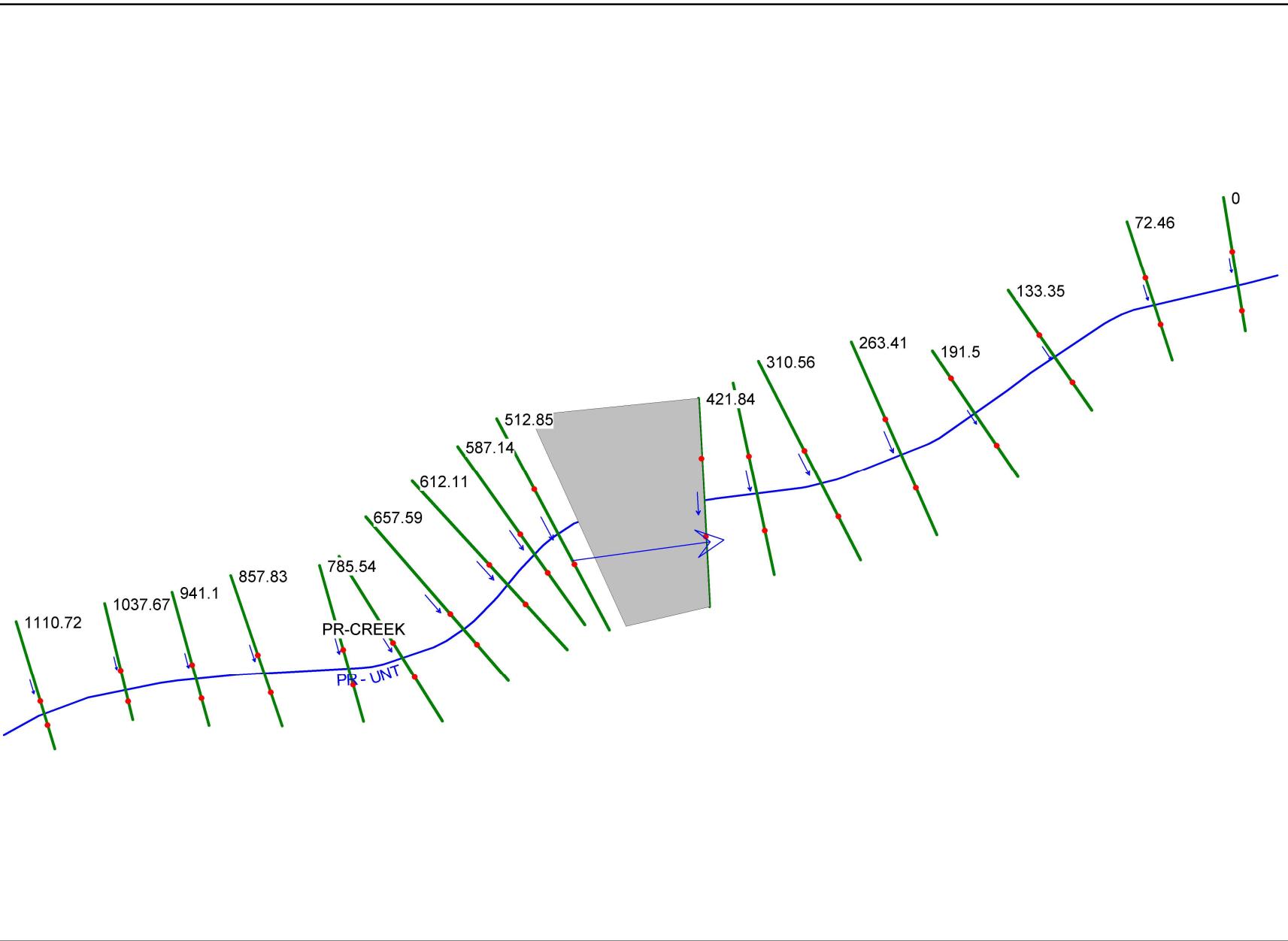

## HEC-RAS Plan: Plan 02 River: UNT Reach: EX-CENTERLINE

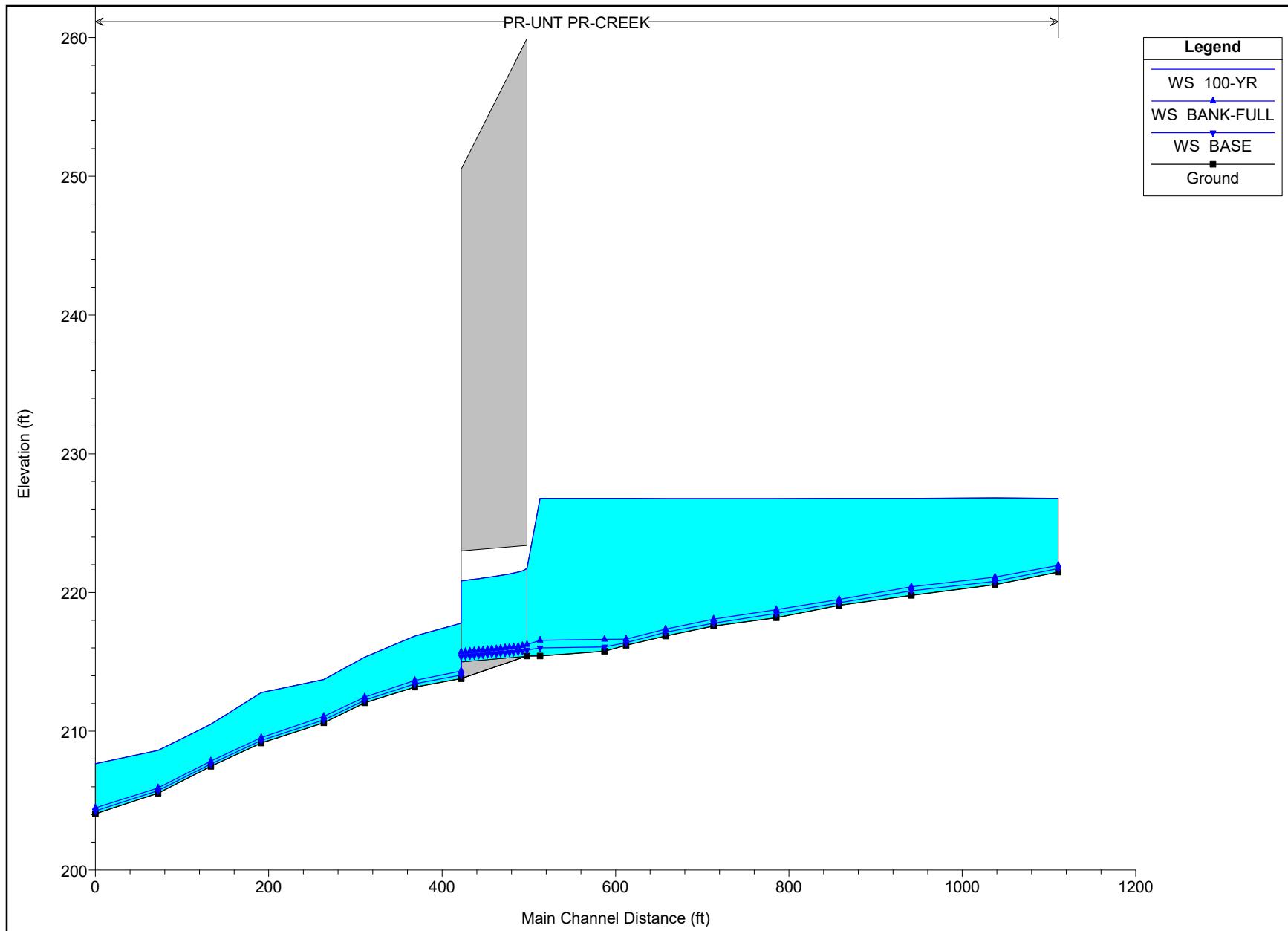
| Reach         | River Sta | Profile   | Q Total | Min Ch El | W.S. Elev | Crit W.S. | E.G. Elev | E.G. Slope | Vel Chnl | Flow Area | Top Width | Froude # Chl |
|---------------|-----------|-----------|---------|-----------|-----------|-----------|-----------|------------|----------|-----------|-----------|--------------|
|               |           |           | (cfs)   | (ft)      | (ft)      | (ft)      | (ft)      | (ft/ft)    | (ft/s)   | (sq ft)   | (ft)      |              |
| EX-CENTERLINE | 1535.43   | 100-YR    | 621.00  | 221.71    | 226.05    | 226.92    | 228.84    | 0.040071   | 13.38    | 46.40     | 25.40     | 1.75         |
| EX-CENTERLINE | 1535.43   | BANK-FULL | 12.50   | 221.71    | 222.42    | 222.51    | 222.76    | 0.040057   | 4.63     | 2.70      | 7.90      | 1.40         |
| EX-CENTERLINE | 1535.43   | BASE      | 3.43    | 221.71    | 222.15    | 222.19    | 222.33    | 0.040027   | 3.41     | 1.01      | 4.64      | 1.29         |
|               |           |           |         |           |           |           |           |            |          |           |           |              |
| EX-CENTERLINE | 1463.43   | 100-YR    | 621.00  | 221.40    | 224.80    | 223.66    | 225.10    | 0.002351   | 4.39     | 141.34    | 55.99     | 0.49         |
| EX-CENTERLINE | 1463.43   | BANK-FULL | 12.50   | 221.40    | 221.88    | 221.75    | 221.91    | 0.003906   | 1.36     | 9.21      | 31.70     | 0.44         |
| EX-CENTERLINE | 1463.43   | BASE      | 3.43    | 221.40    | 221.70    | 221.63    | 221.71    | 0.004696   | 0.90     | 3.79      | 27.53     | 0.43         |
|               |           |           |         |           |           |           |           |            |          |           |           |              |
| EX-CENTERLINE | 1329.51   | 100-YR    | 621.00  | 220.18    | 224.15    |           | 224.67    | 0.004294   | 5.77     | 107.70    | 43.99     | 0.65         |
| EX-CENTERLINE | 1329.51   | BANK-FULL | 12.50   | 220.18    | 220.77    | 220.76    | 220.92    | 0.018148   | 3.07     | 4.07      | 12.79     | 0.96         |
| EX-CENTERLINE | 1329.51   | BASE      | 3.43    | 220.18    | 220.50    | 220.49    | 220.59    | 0.018767   | 2.37     | 1.45      | 6.88      | 0.91         |
|               |           |           |         |           |           |           |           |            |          |           |           |              |
| EX-CENTERLINE | 1193.63   | 100-YR    | 621.00  | 218.50    | 222.52    | 222.52    | 223.73    | 0.010452   | 8.84     | 70.24     | 29.03     | 1.00         |
| EX-CENTERLINE | 1193.63   | BANK-FULL | 12.50   | 218.50    | 219.50    |           | 219.58    | 0.006018   | 2.23     | 5.60      | 12.38     | 0.58         |
| EX-CENTERLINE | 1193.63   | BASE      | 3.43    | 218.50    | 219.12    |           | 219.17    | 0.006597   | 1.80     | 1.91      | 6.21      | 0.57         |
|               |           |           |         |           |           |           |           |            |          |           |           |              |
| EX-CENTERLINE | 1075.23   | 100-YR    | 621.00  | 217.84    | 221.18    | 221.27    | 222.40    | 0.012016   | 8.87     | 70.03     | 32.38     | 1.06         |
| EX-CENTERLINE | 1075.23   | BANK-FULL | 12.50   | 217.84    | 218.49    | 218.43    | 218.60    | 0.011851   | 2.69     | 4.64      | 13.01     | 0.79         |
| EX-CENTERLINE | 1075.23   | BASE      | 3.43    | 217.84    | 218.23    | 218.16    | 218.28    | 0.008534   | 1.75     | 1.96      | 8.20      | 0.63         |
|               |           |           |         |           |           |           |           |            |          |           |           |              |
| EX-CENTERLINE | 1021.38   | 100-YR    | 621.00  | 217.34    | 220.44    | 220.50    | 221.76    | 0.011300   | 9.22     | 67.38     | 27.44     | 1.04         |
| EX-CENTERLINE | 1021.38   | BANK-FULL | 12.50   | 217.34    | 217.64    | 217.64    | 217.77    | 0.020684   | 2.92     | 4.28      | 16.14     | 1.00         |
| EX-CENTERLINE | 1021.38   | BASE      | 3.43    | 217.34    | 217.48    | 217.48    | 217.54    | 0.026948   | 1.93     | 1.78      | 15.39     | 1.00         |
|               |           |           |         |           |           |           |           |            |          |           |           |              |
| EX-CENTERLINE | 950.73    | 100-YR    | 621.00  | 215.38    | 216.91    | 217.80    | 219.98    | 0.065961   | 14.07    | 44.14     | 37.62     | 2.29         |
| EX-CENTERLINE | 950.73    | BANK-FULL | 12.50   | 215.38    | 215.63    | 215.68    | 215.81    | 0.039009   | 3.33     | 3.75      | 18.87     | 1.32         |
| EX-CENTERLINE | 950.73    | BASE      | 3.43    | 215.38    | 215.52    | 215.52    | 215.58    | 0.028525   | 1.97     | 1.74      | 15.23     | 1.03         |
|               |           |           |         |           |           |           |           |            |          |           |           |              |
| EX-CENTERLINE | 889.71    | 100-YR    | 621.00  | 210.49    | 214.70    | 215.48    | 217.17    | 0.030286   | 12.59    | 49.31     | 24.44     | 1.56         |
| EX-CENTERLINE | 889.71    | BANK-FULL | 12.50   | 210.49    | 211.27    | 211.54    | 212.15    | 0.098591   | 7.50     | 1.67      | 4.26      | 2.11         |
| EX-CENTERLINE | 889.71    | BASE      | 3.43    | 210.49    | 210.91    | 211.12    | 211.74    | 0.218116   | 7.31     | 0.47      | 2.26      | 2.83         |
|               |           |           |         |           |           |           |           |            |          |           |           |              |
| EX-CENTERLINE | 880       | Culvert   |         |           |           |           |           |            |          |           |           |              |
|               |           |           |         |           |           |           |           |            |          |           |           |              |
| EX-CENTERLINE | 233.62    | 100-YR    | 621.00  | 205.33    | 208.83    |           | 209.62    | 0.007283   | 7.14     | 87.03     | 36.65     | 0.82         |
| EX-CENTERLINE | 233.62    | BANK-FULL | 12.50   | 205.33    | 205.71    | 205.85    | 206.16    | 0.084009   | 5.38     | 2.33      | 10.07     | 1.97         |
| EX-CENTERLINE | 233.62    | BASE      | 3.43    | 205.33    | 205.52    | 205.63    | 205.96    | 0.265749   | 5.33     | 0.64      | 6.72      | 3.03         |
|               |           |           |         |           |           |           |           |            |          |           |           |              |
| EX-CENTERLINE | 160.4     | 100-YR    | 621.00  | 204.35    | 208.00    | 208.00    | 208.95    | 0.011312   | 7.80     | 79.61     | 43.33     | 1.01         |
| EX-CENTERLINE | 160.4     | BANK-FULL | 12.50   | 204.35    | 205.06    | 205.06    | 205.25    | 0.019534   | 3.44     | 3.64      | 10.21     | 1.01         |
| EX-CENTERLINE | 160.4     | BASE      | 3.43    | 204.35    | 204.78    | 204.78    | 204.88    | 0.022256   | 2.61     | 1.31      | 6.13      | 1.00         |
|               |           |           |         |           |           |           |           |            |          |           |           |              |
| EX-CENTERLINE | 102.66    | 100-YR    | 621.00  | 203.68    | 207.48    | 206.92    | 208.31    | 0.006150   | 7.30     | 85.02     | 29.60     | 0.76         |
| EX-CENTERLINE | 102.66    | BANK-FULL | 12.50   | 203.68    | 204.34    | 204.06    | 204.36    | 0.001926   | 1.30     | 9.65      | 20.38     | 0.33         |
| EX-CENTERLINE | 102.66    | BASE      | 3.43    | 203.68    | 204.08    | 203.89    | 204.09    | 0.001350   | 0.75     | 4.60      | 17.22     | 0.25         |
|               |           |           |         |           |           |           |           |            |          |           |           |              |
| EX-CENTERLINE | 0         | 100-YR    | 621.00  | 203.49    | 206.23    | 206.23    | 207.44    | 0.011081   | 8.82     | 70.45     | 29.48     | 1.01         |
| EX-CENTERLINE | 0         | BANK-FULL | 12.50   | 203.49    | 203.78    | 203.78    | 203.87    | 0.022415   | 2.53     | 4.94      | 24.59     | 1.00         |
| EX-CENTERLINE | 0         | BASE      | 3.43    | 203.49    | 203.65    | 203.65    | 203.70    | 0.028832   | 1.75     | 1.96      | 20.56     | 1.00         |

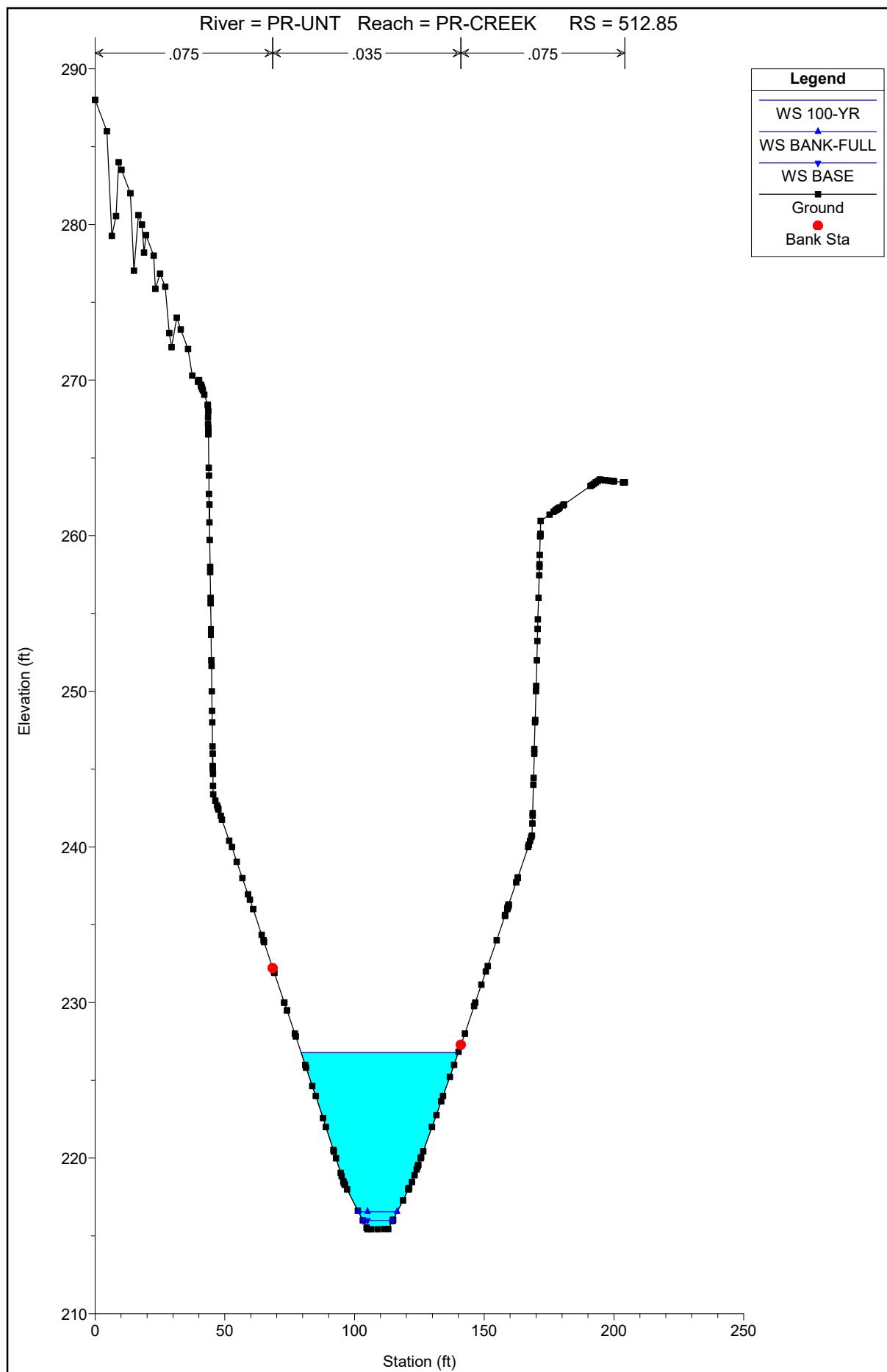
Errors Warnings and Notes for Plan : Plan 02

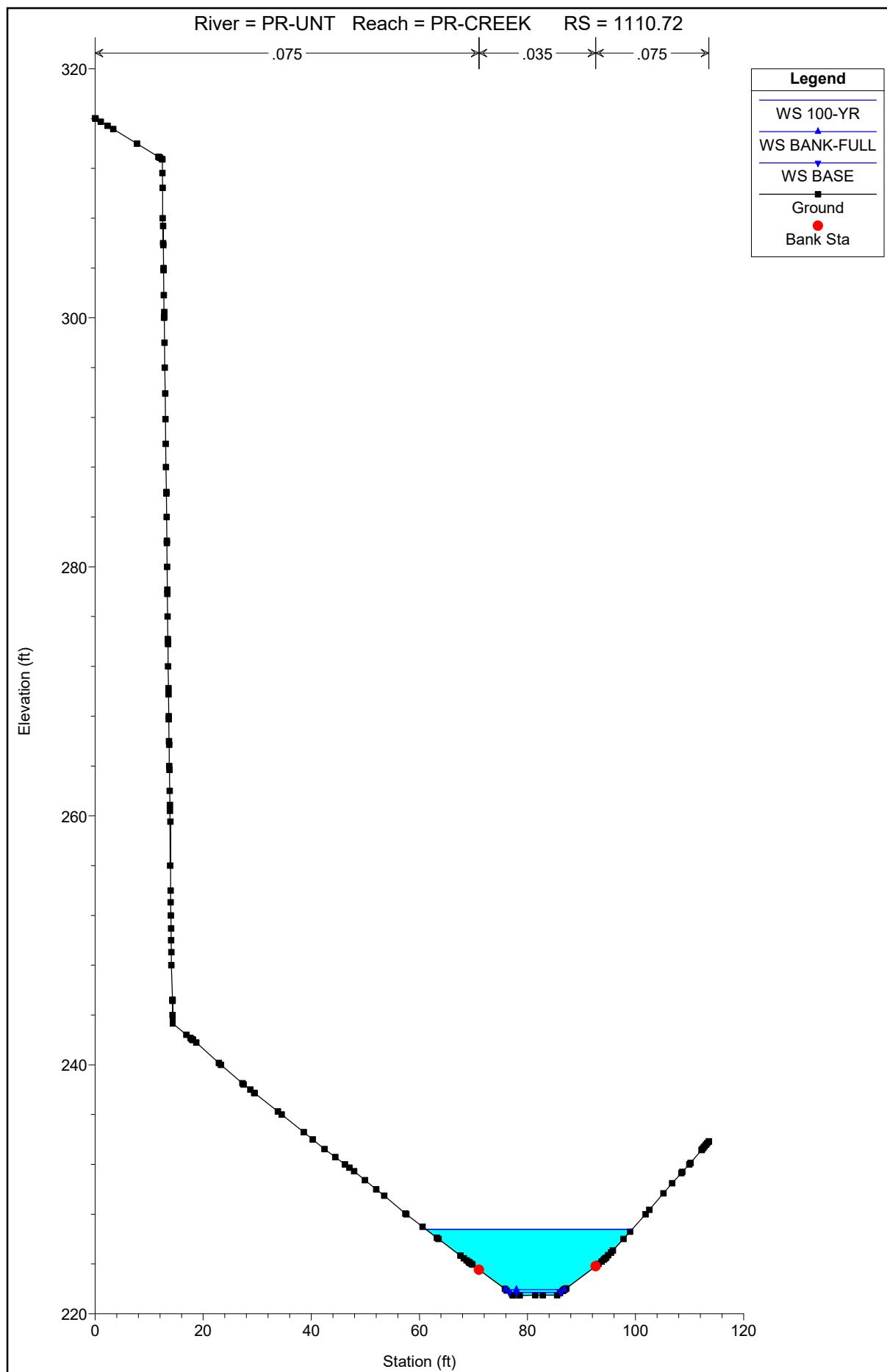
|           |                                                                                                                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location: | River: UNT Reach: EX-CENTERLINE RS: 1463.43 Profile: 100-YR                                                                                                                                                                                                             |
| Note:     | Hydraulic jump has occurred between this cross section and the previous upstream section.                                                                                                                                                                               |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 1463.43 Profile: BANK-FULL                                                                                                                                                                                                          |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Note:     | Hydraulic jump has occurred between this cross section and the previous upstream section.                                                                                                                                                                               |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 1463.43 Profile: BASE                                                                                                                                                                                                               |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.                                                                                                              |
| Note:     | Hydraulic jump has occurred between this cross section and the previous upstream section.                                                                                                                                                                               |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 1329.51 Profile: 100-YR                                                                                                                                                                                                             |
| Warning:  | The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.                                                                                                                                                   |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 1329.51 Profile: BANK-FULL                                                                                                                                                                                                          |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.                                                                                                              |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 1329.51 Profile: BASE                                                                                                                                                                                                               |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.                                                                                                              |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 1193.63 Profile: 100-YR                                                                                                                                                                                                             |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.                                                                                      |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.                                                                                                              |
| Warning:  | During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 1193.63 Profile: BANK-FULL                                                                                                                                                                                                          |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 1075.23 Profile: 100-YR                                                                                                                                                                                                             |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.                                                                                                              |
| Note:     | Program found supercritical flow starting at this cross section.                                                                                                                                                                                                        |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 1075.23 Profile: BASE                                                                                                                                                                                                               |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 1021.38 Profile: BANK-FULL                                                                                                                                                                                                          |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.                                                                                      |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.                                                                                                              |
| Warning:  | During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. |

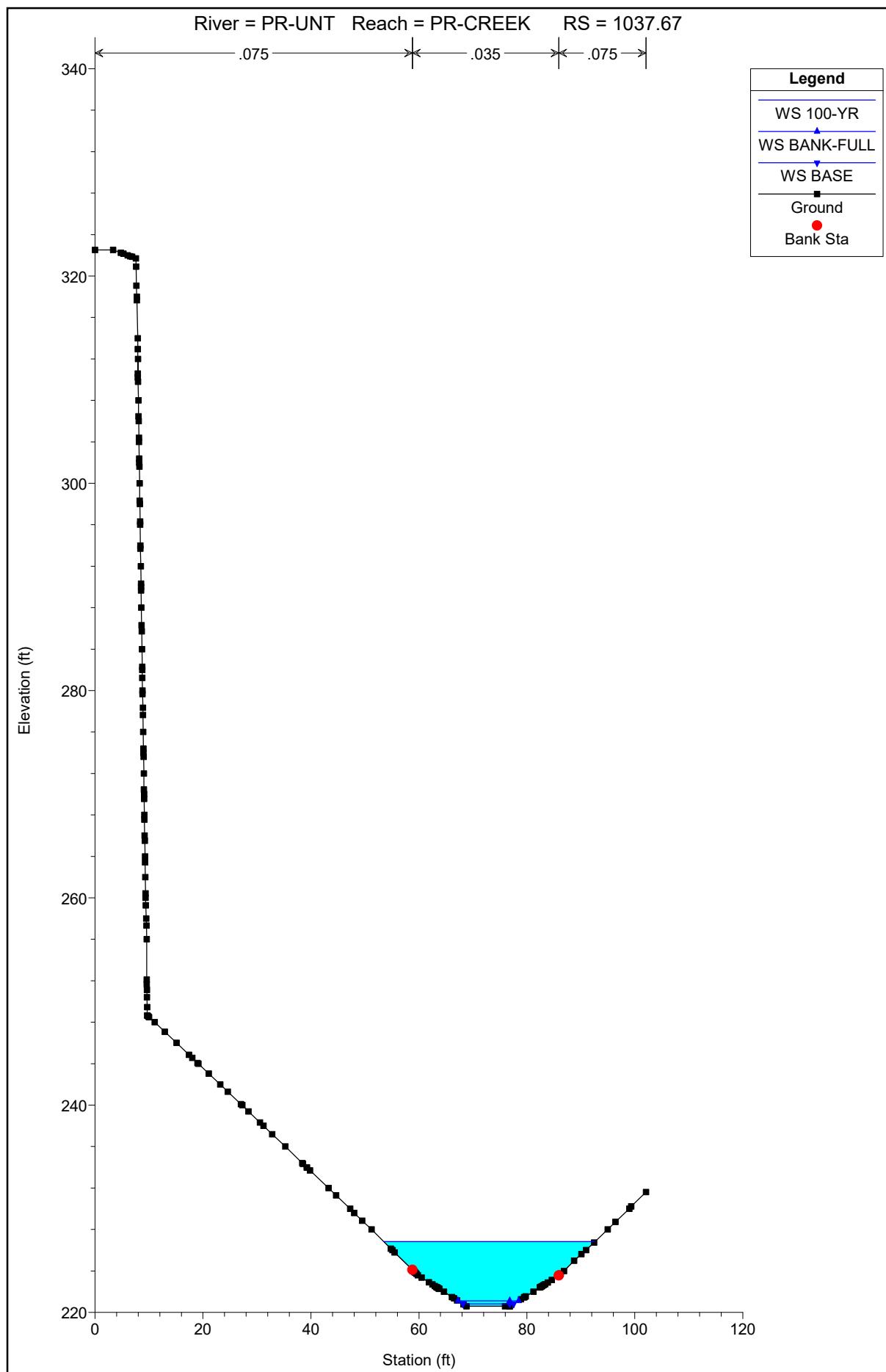
Errors Warnings and Notes for Plan : Plan 02 (Continued)

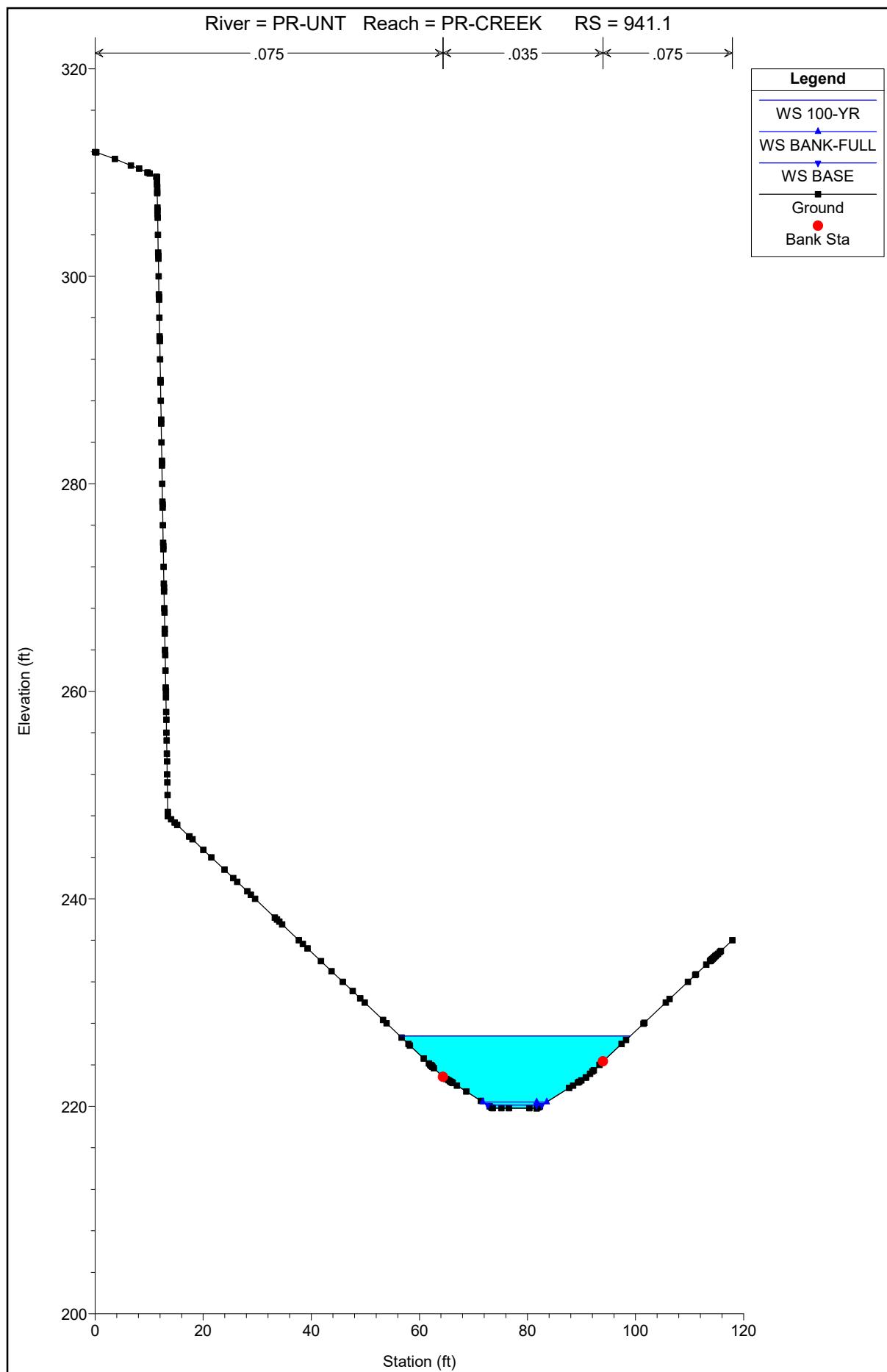

|           |                                                                                                                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location: | River: UNT Reach: EX-CENTERLINE RS: 1021.38 Profile: BASE                                                                                                                                                                                                               |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.                                                                                      |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Warning:  | During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 950.73 Profile: 100-YR                                                                                                                                                                                                              |
| Warning:  | The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.                                                                                                                                                   |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 950.73 Profile: BANK-FULL                                                                                                                                                                                                           |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Note:     | Program found supercritical flow starting at this cross section.                                                                                                                                                                                                        |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 950.73 Profile: BASE                                                                                                                                                                                                                |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Note:     | Program found supercritical flow starting at this cross section.                                                                                                                                                                                                        |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 889.71 Profile: 100-YR                                                                                                                                                                                                              |
| Warning:  | The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.                                                                                                                                                   |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 889.71 Profile: BANK-FULL                                                                                                                                                                                                           |
| Warning:  | The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.                                                                                                                                                   |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 889.71 Profile: BASE                                                                                                                                                                                                                |
| Warning:  | The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.                                                                                                                                                   |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 880 Profile: 100-YR                                                                                                                                                                                                                 |
| Note:     | During the supercritical calculations a hydraulic jump occurred at the outlet of (leaving) the culvert.                                                                                                                                                                 |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 880 Profile: 100-YR Culv: Culvert #1                                                                                                                                                                                                |
| Note:     | The flow in the culvert is entirely supercritical.                                                                                                                                                                                                                      |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 880 Profile: BANK-FULL Culv: Culvert #1                                                                                                                                                                                             |
| Note:     | During supercritical analysis, the culvert direct step method went to normal depth. The program then assumed normal depth at the outlet.                                                                                                                                |
| Note:     | The flow in the culvert is entirely supercritical.                                                                                                                                                                                                                      |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 880 Profile: BASE Culv: Culvert #1                                                                                                                                                                                                  |

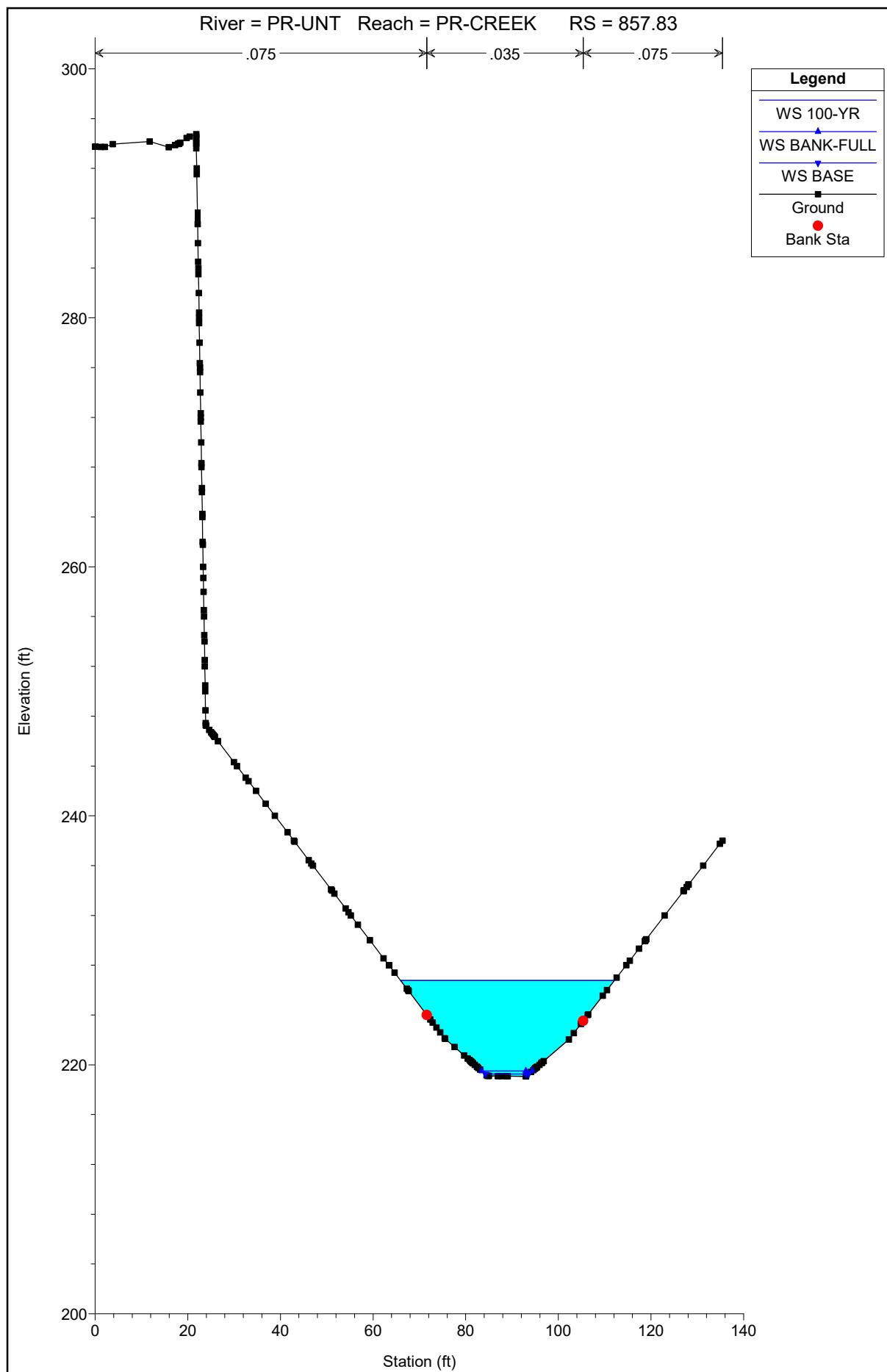

Errors Warnings and Notes for Plan : Plan 02 (Continued)

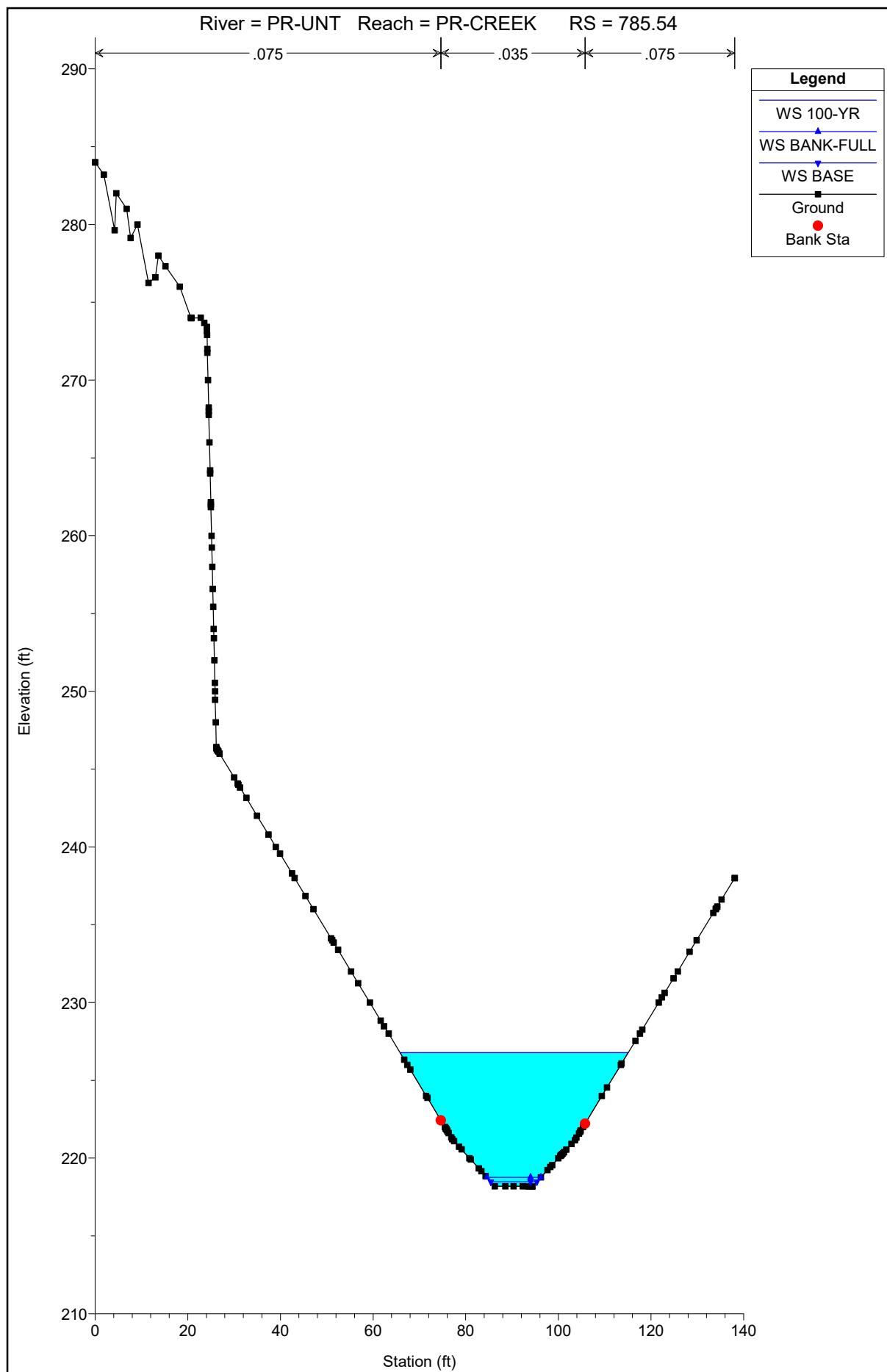

|           |                                                                                                                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Warning:  | During the supercritical analysis, the program could not converge on a supercritical answer in the downstream cross section. The program used the solution with the least error.                                                                                        |
| Note:     | During supercritical analysis, the culvert direct step method went to normal depth. The program then assumed normal depth at the outlet.                                                                                                                                |
| Note:     | During supercritical analysis, the culvert direct step method went to critical depth. The program then assumed critical depth at the outlet.                                                                                                                            |
| Note:     | The flow in the culvert is entirely supercritical.                                                                                                                                                                                                                      |
| Note:     | During the supercritical calculations a hydraulic jump occurred inside of the culvert.                                                                                                                                                                                  |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 160.4 Profile: 100-YR                                                                                                                                                                                                               |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.                                                                                      |
| Warning:  | During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 160.4 Profile: BANK-FULL                                                                                                                                                                                                            |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.                                                                                      |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Warning:  | During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 160.4 Profile: BASE                                                                                                                                                                                                                 |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.                                                                                      |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Warning:  | During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 102.66 Profile: 100-YR                                                                                                                                                                                                              |
| Note:     | Hydraulic jump has occurred between this cross section and the previous upstream section.                                                                                                                                                                               |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 102.66 Profile: BANK-FULL                                                                                                                                                                                                           |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Note:     | Hydraulic jump has occurred between this cross section and the previous upstream section.                                                                                                                                                                               |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 102.66 Profile: BASE                                                                                                                                                                                                                |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Note:     | Hydraulic jump has occurred between this cross section and the previous upstream section.                                                                                                                                                                               |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 0 Profile: 100-YR                                                                                                                                                                                                                   |
| Warning:  | Slope too steep for slope area to converge during supercritical flow calculations (normal depth is below critical depth). Water surface set to critical depth.                                                                                                          |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 0 Profile: BANK-FULL                                                                                                                                                                                                                |
| Warning:  | Slope too steep for slope area to converge during supercritical flow calculations (normal depth is below critical depth). Water surface set to critical depth.                                                                                                          |
| Location: | River: UNT Reach: EX-CENTERLINE RS: 0 Profile: BASE                                                                                                                                                                                                                     |
| Warning:  | Slope too steep for slope area to converge during supercritical flow calculations (normal depth is below critical depth). Water surface set to critical depth.                                                                                                          |

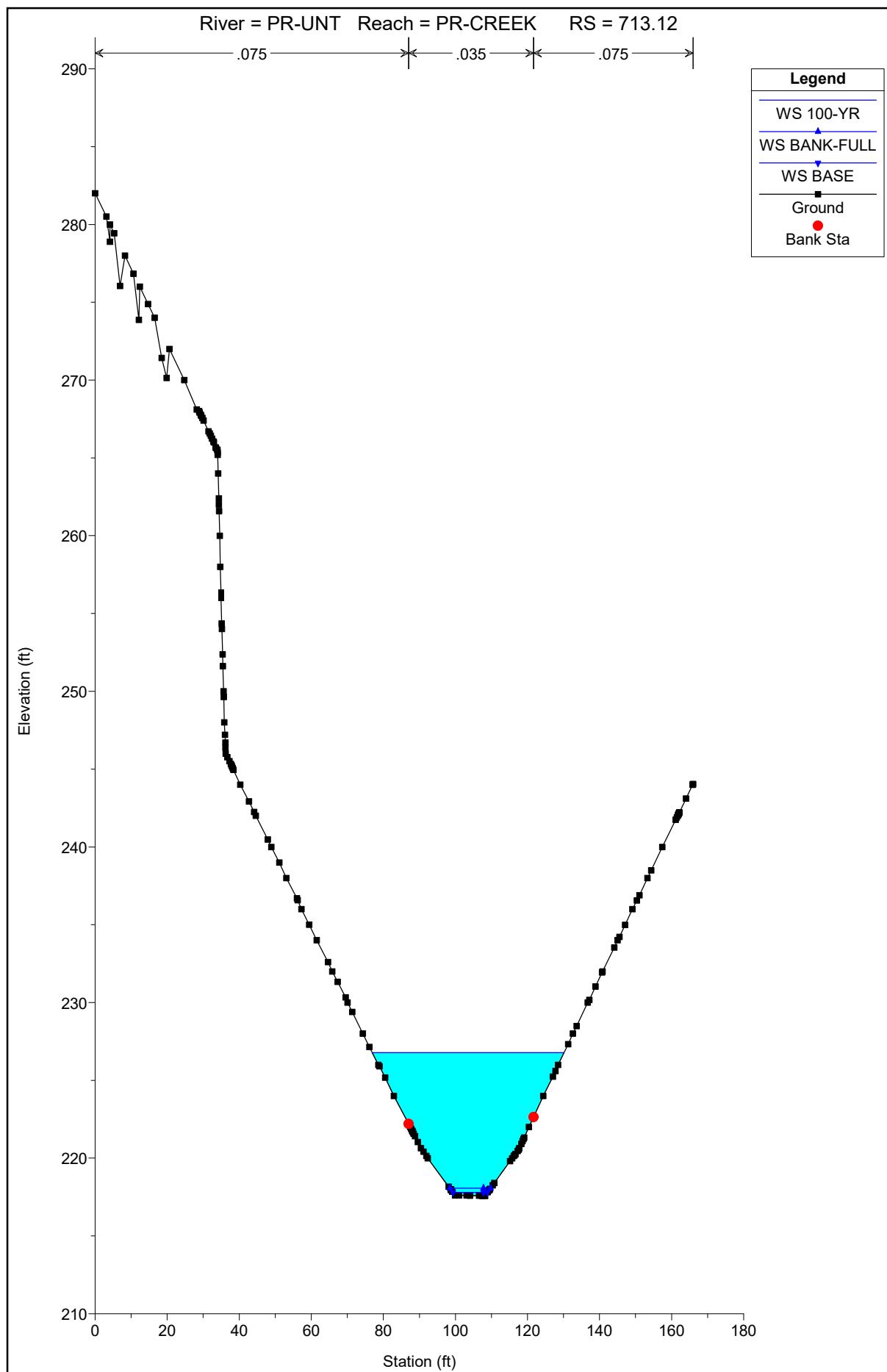

## **Appendix C**

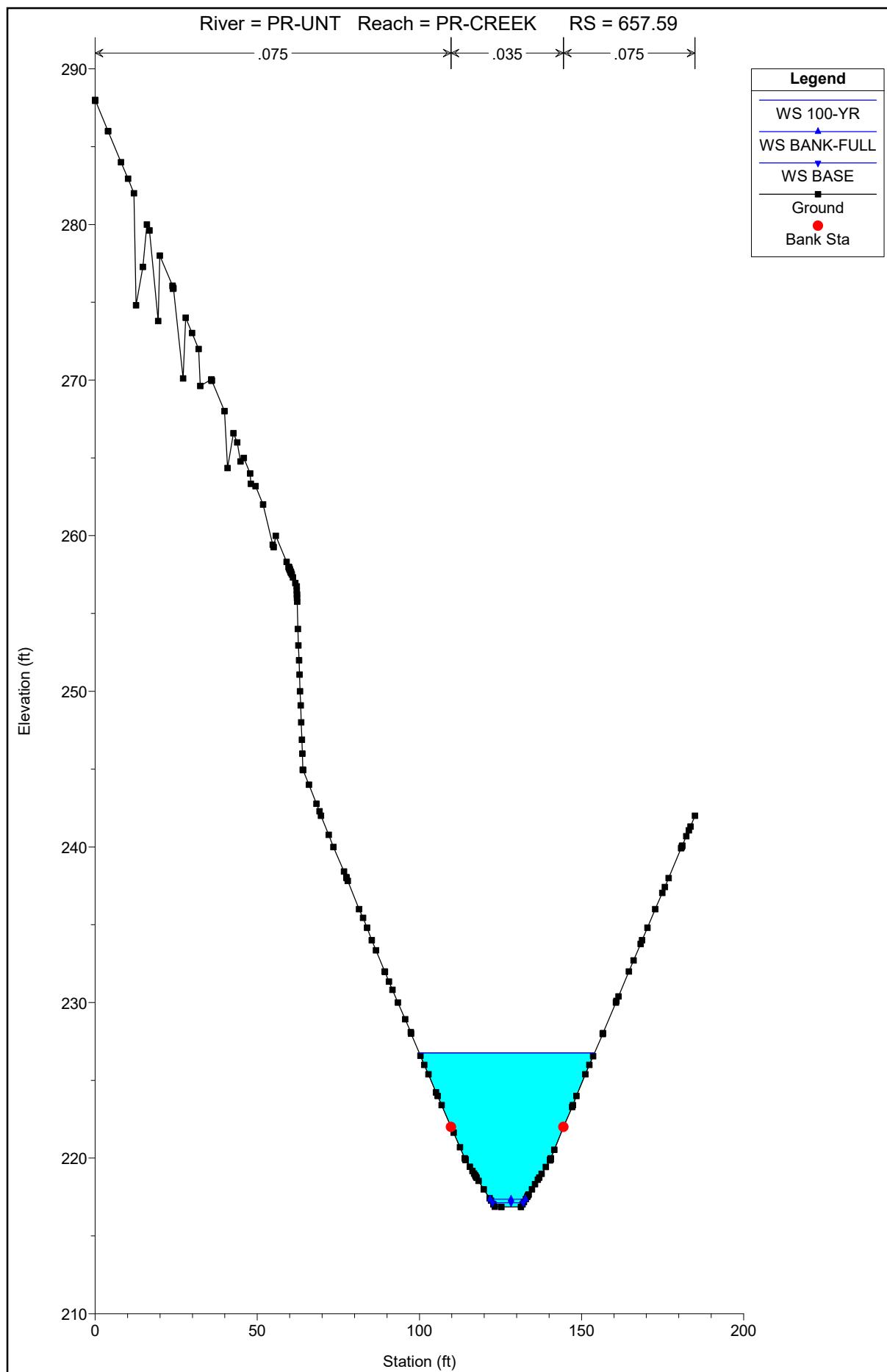

HEC-RAS Outputs for Proposed Condition

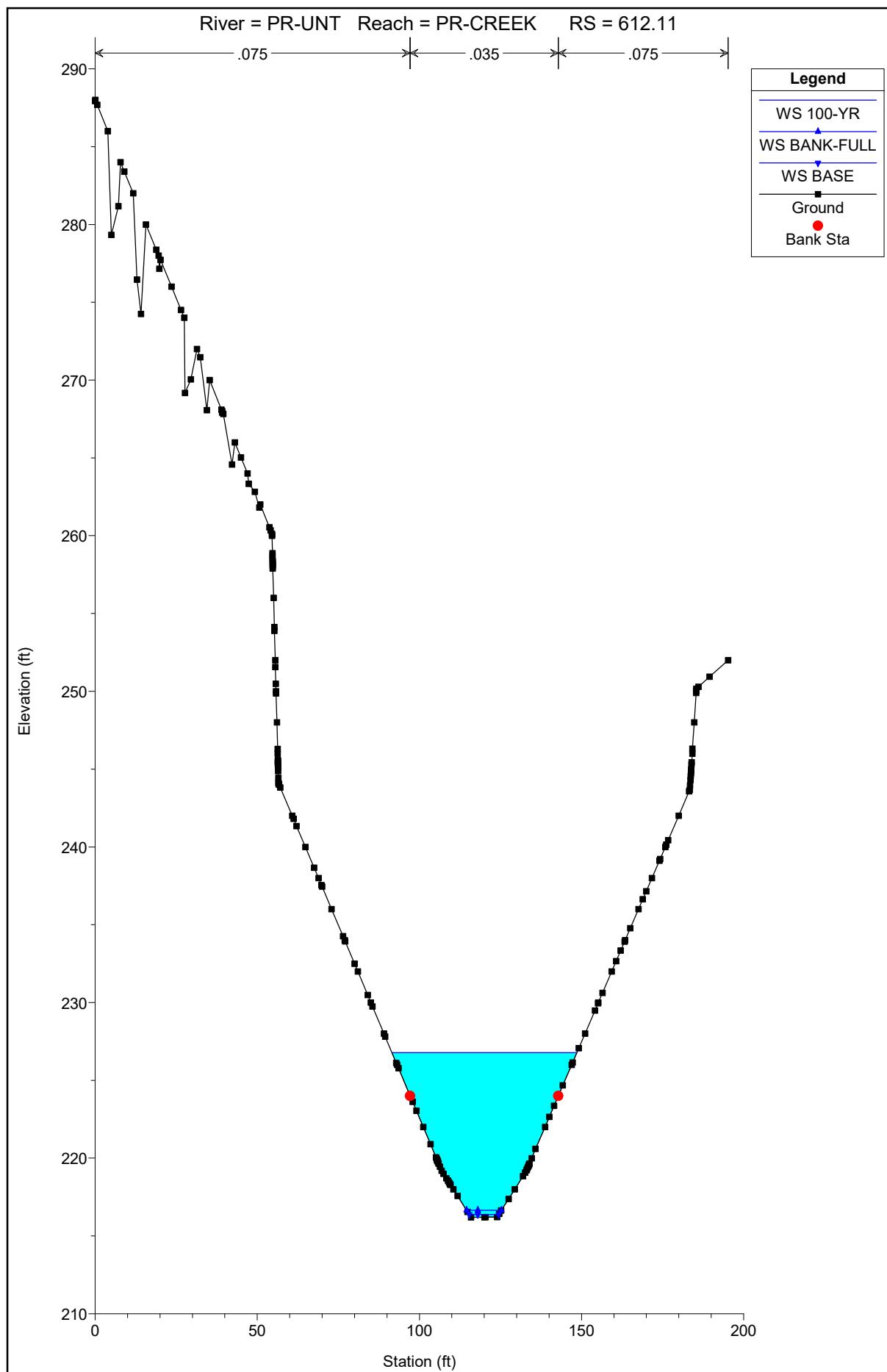


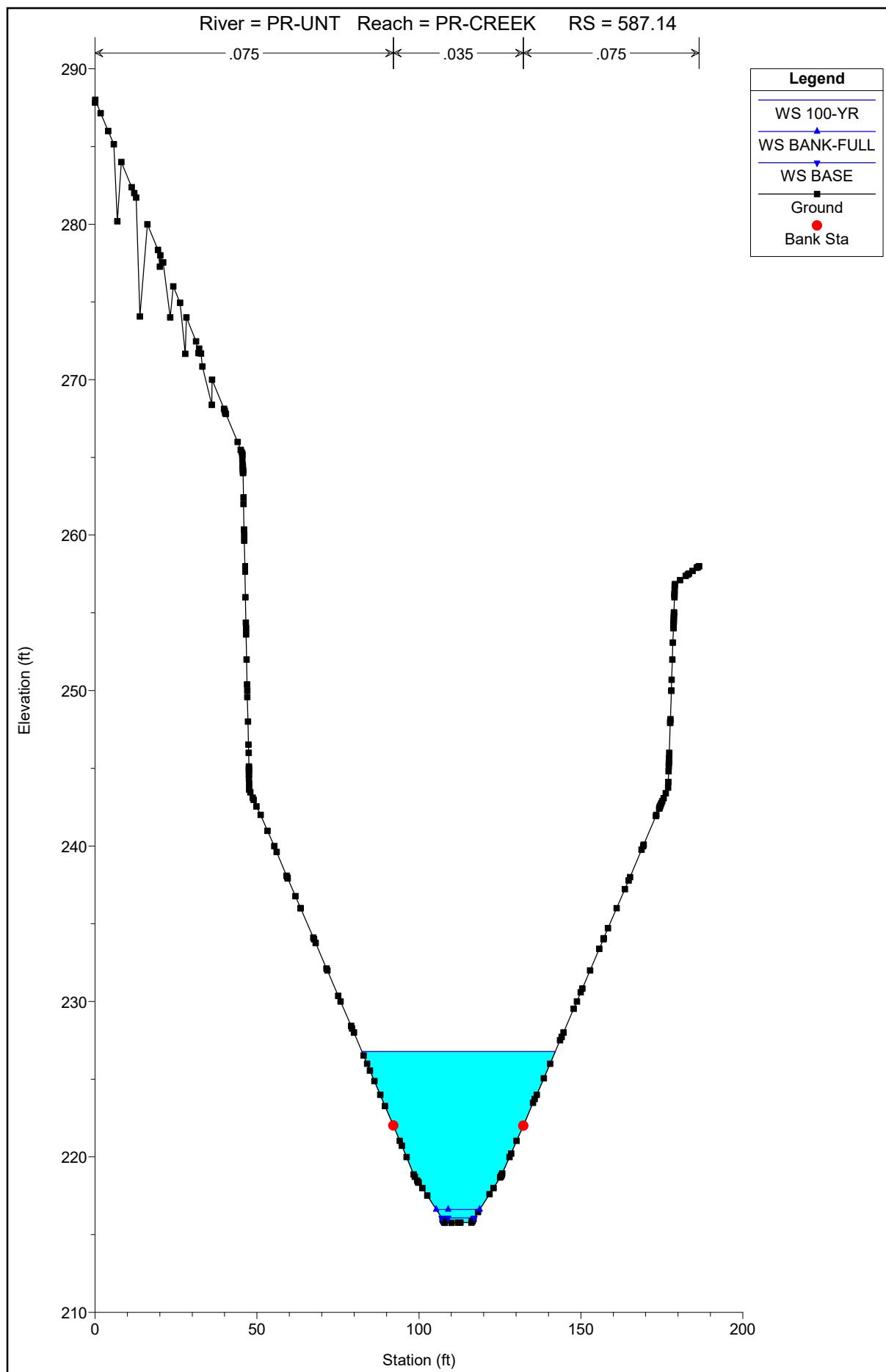



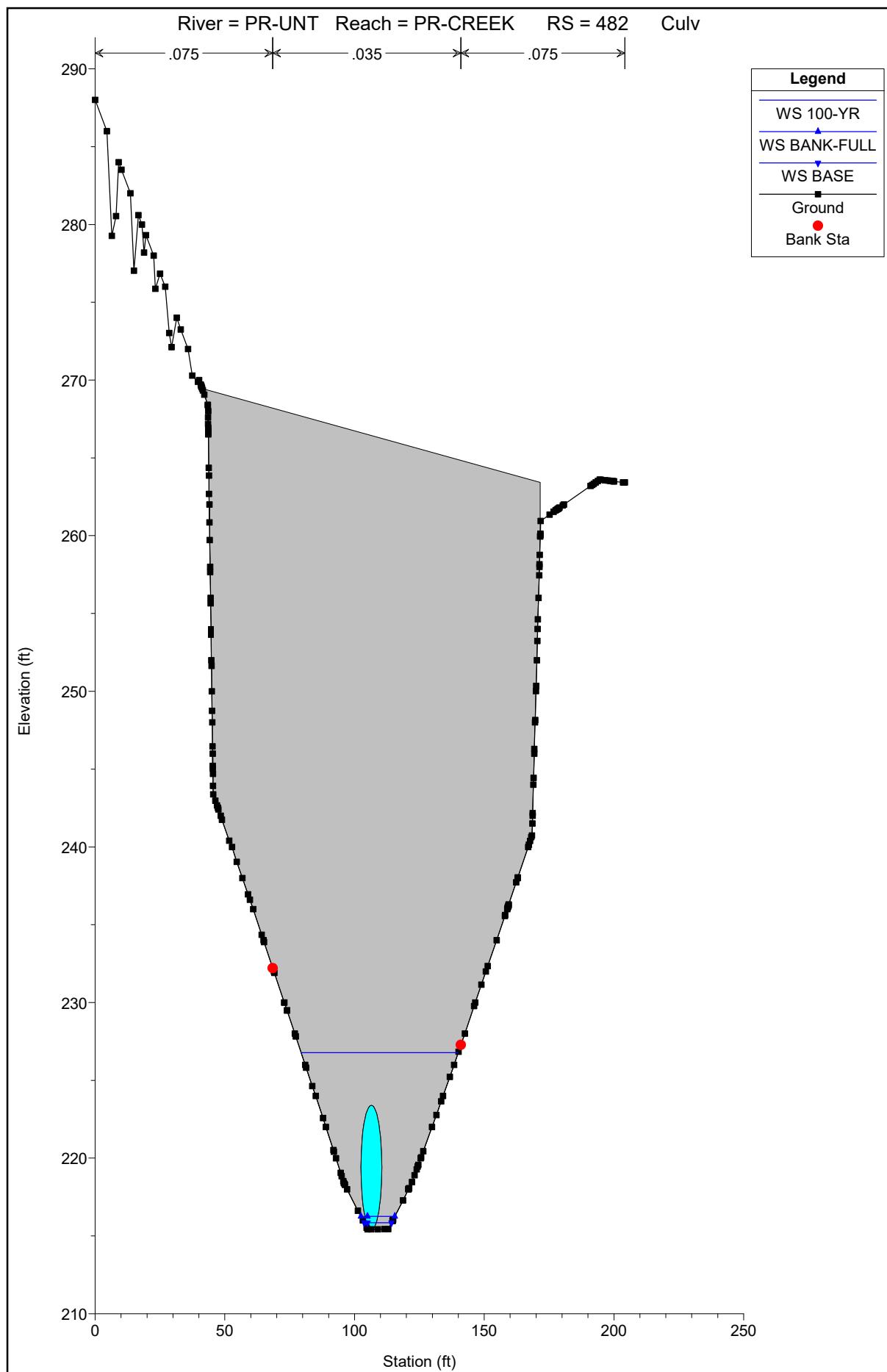



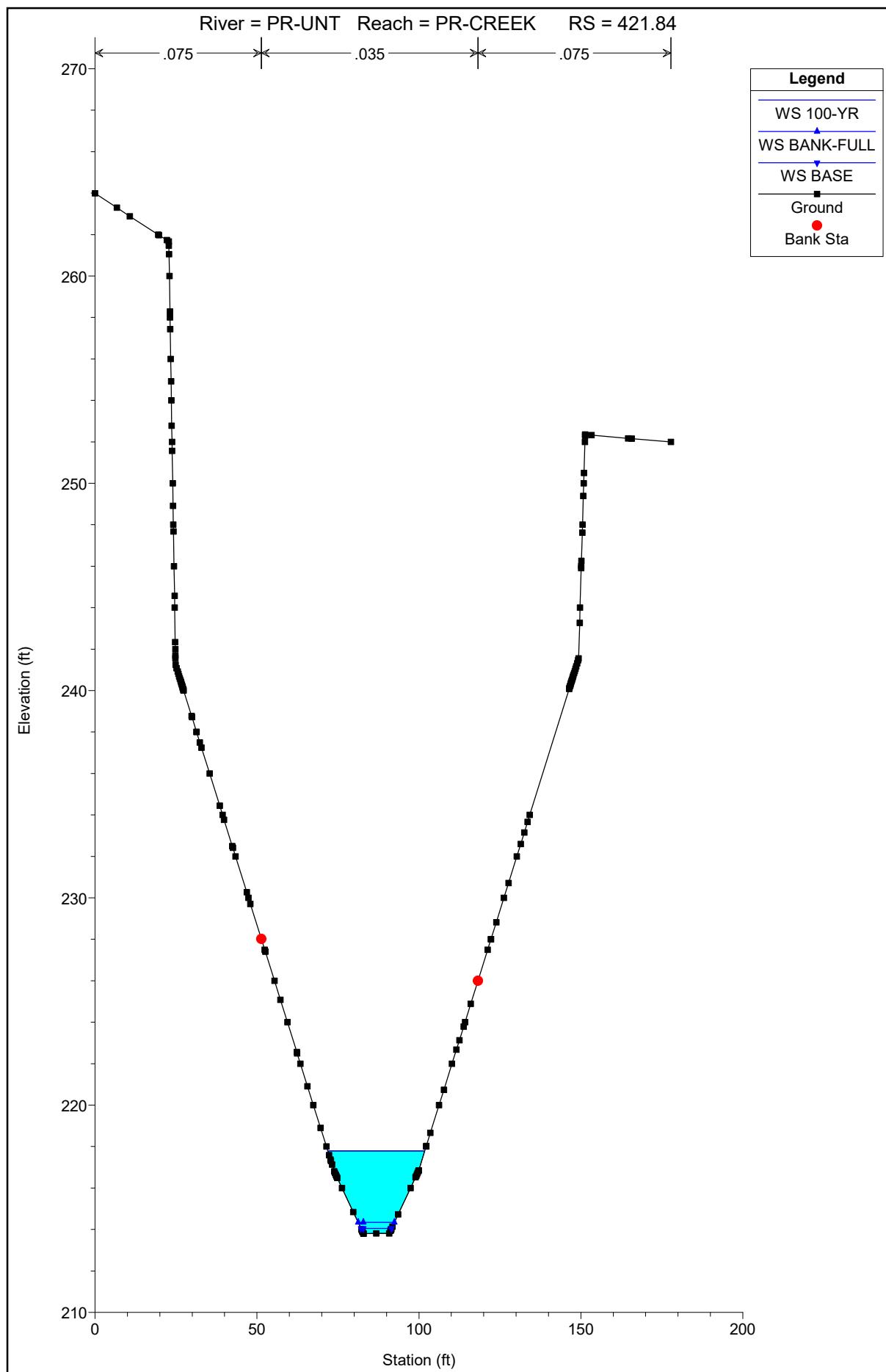



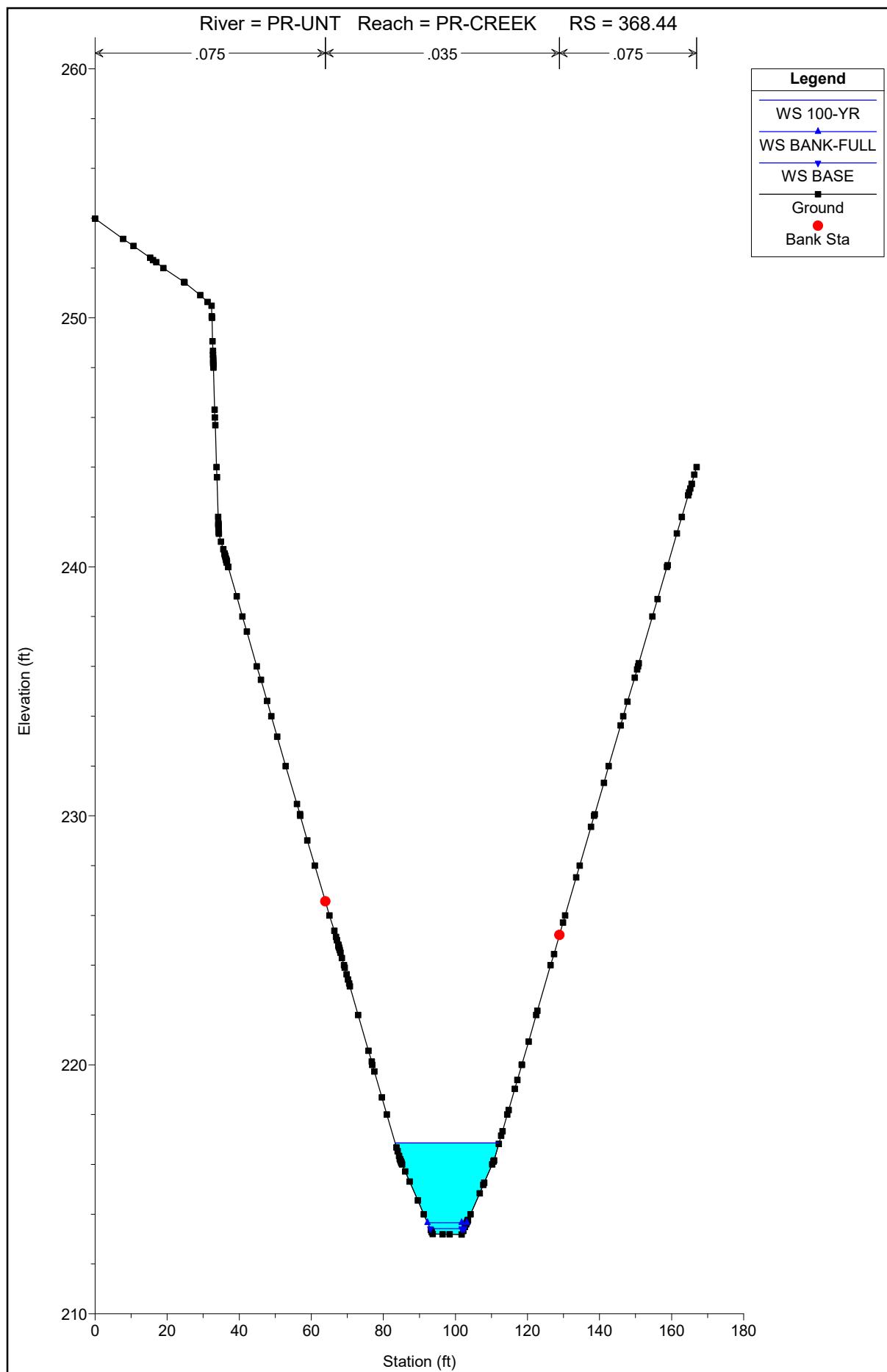



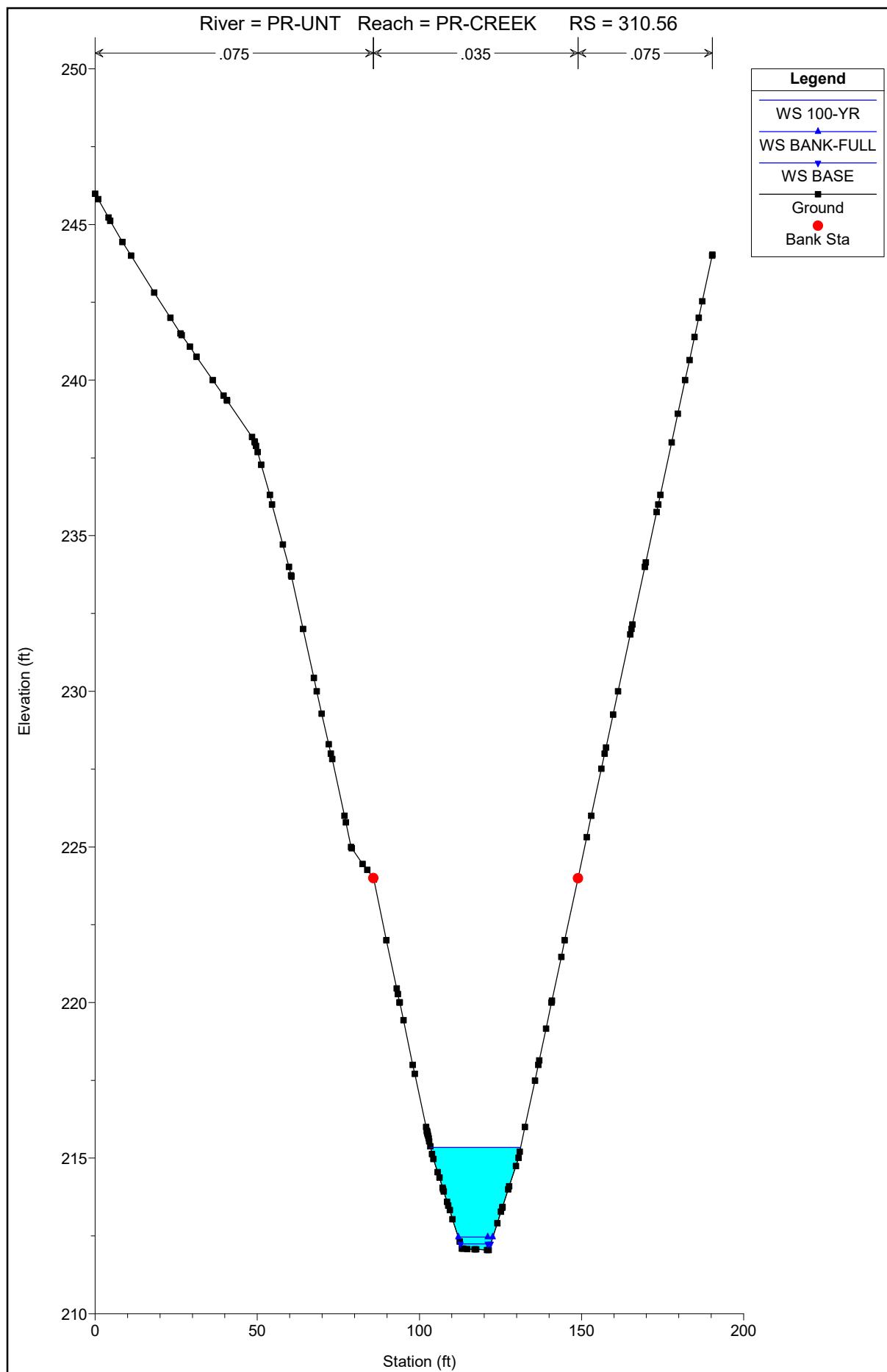



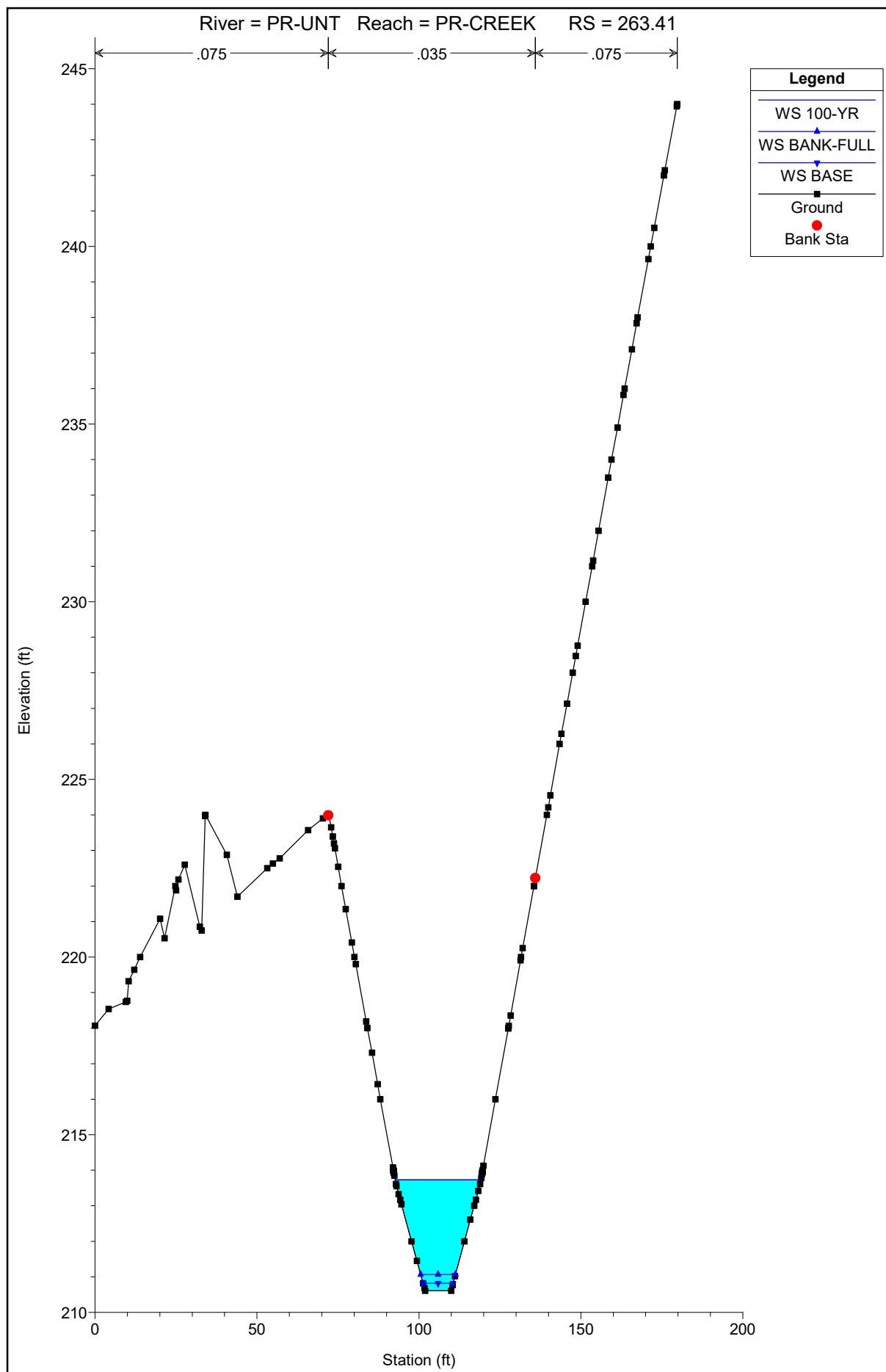



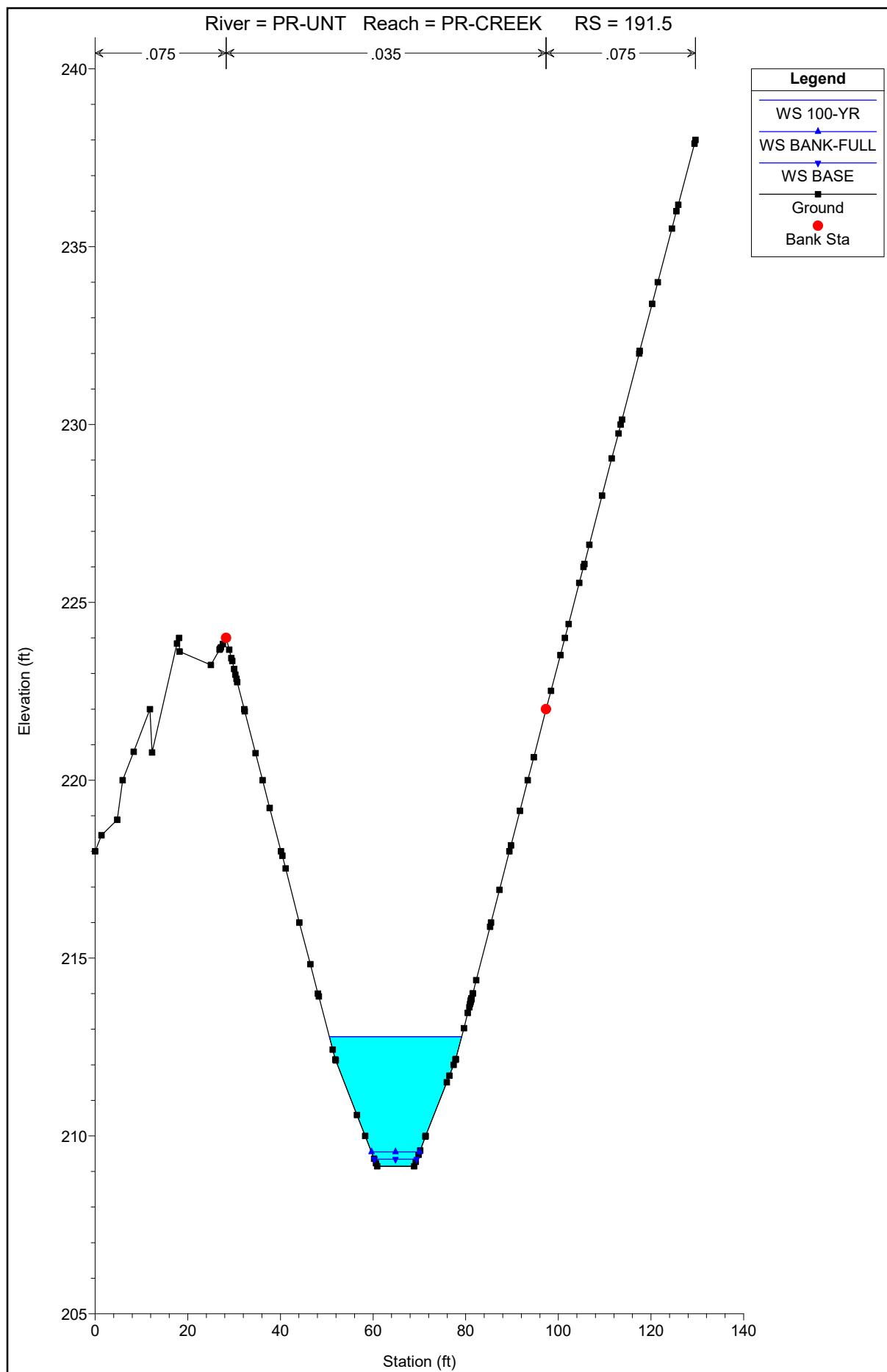



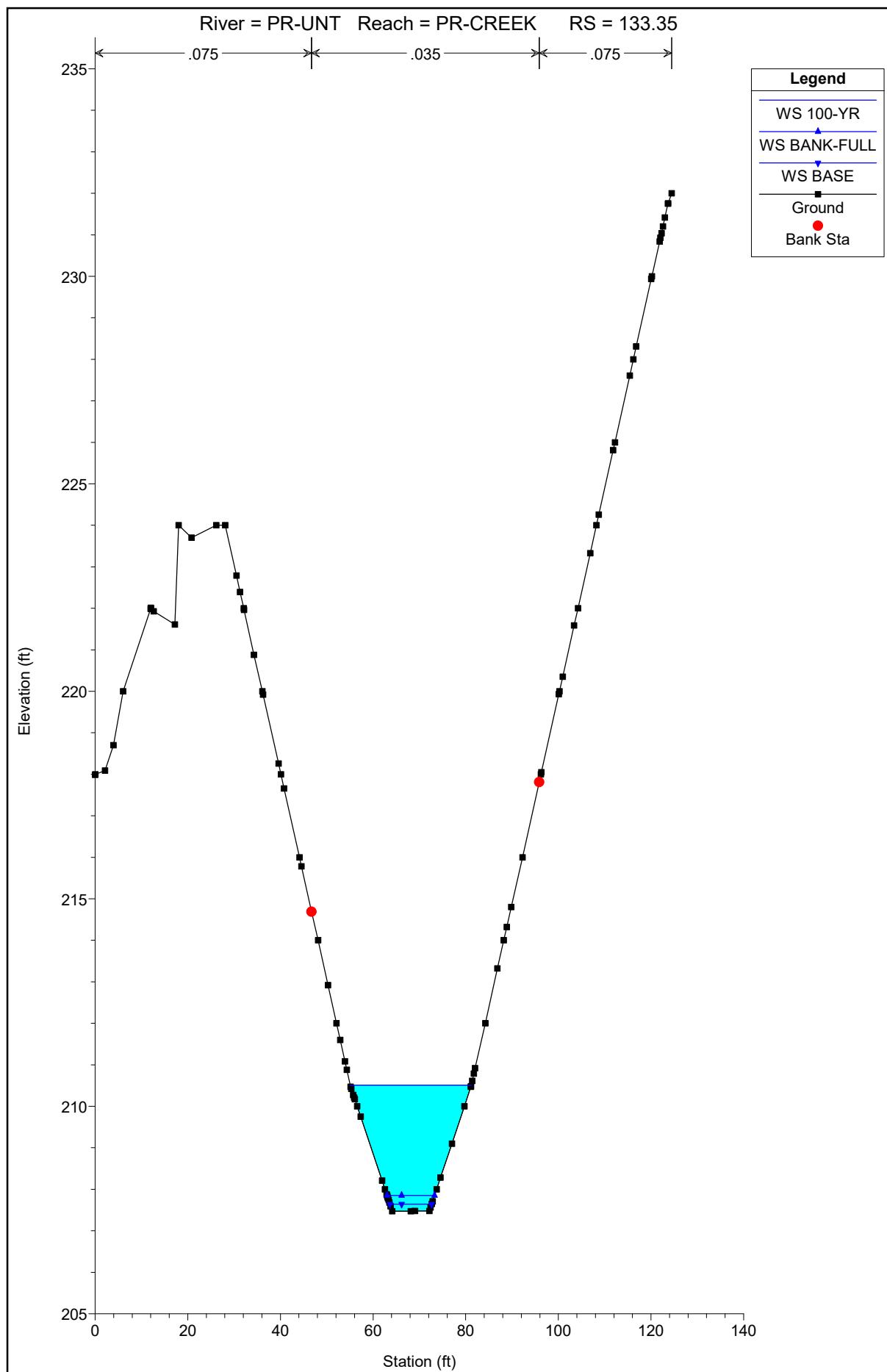



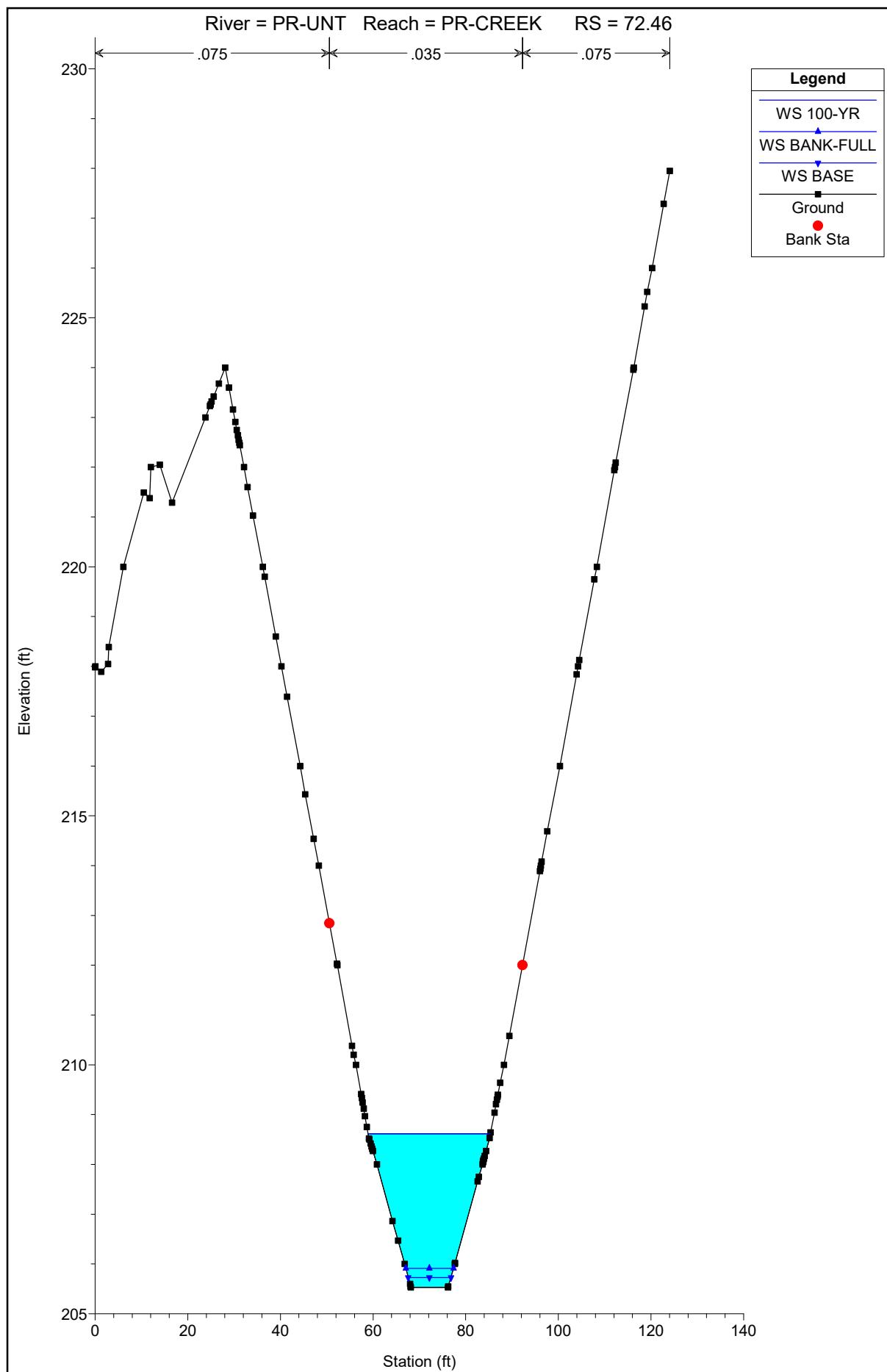



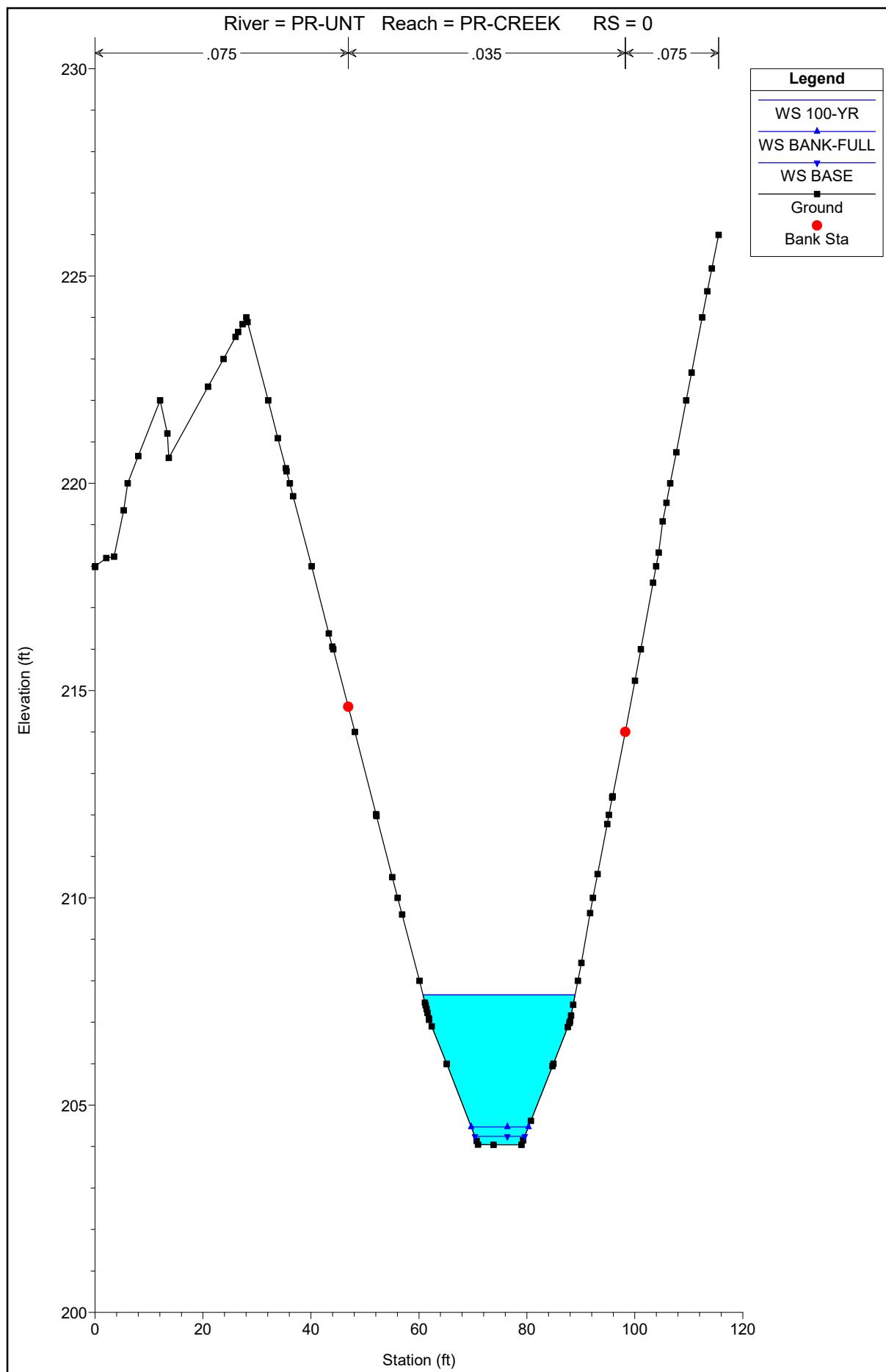














HEC-RAS Plan: 2 River: PR-UNT Reach: PR-CREEK

| Reach    | River Sta | Profile   | Q Total<br>(cfs) | Min Ch El<br>(ft) | W.S. Elev<br>(ft) | Crit W.S.<br>(ft) | E.G. Elev<br>(ft) | E.G. Slope<br>(ft/ft) | Vel Chnl<br>(ft/s) | Flow Area<br>(sq ft) | Top Width<br>(ft) | Froude # Chl |
|----------|-----------|-----------|------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|--------------------|----------------------|-------------------|--------------|
| PR-CREEK | 1110.72   | 100-YR    | 621.00           | 221.48            | 226.79            | 225.16            | 227.30            | 0.002606              | 5.88               | 126.33               | 38.20             | 0.48         |
| PR-CREEK | 1110.72   | BANK-FULL | 12.50            | 221.48            | 221.95            | 221.88            | 222.08            | 0.015127              | 2.83               | 4.42                 | 10.92             | 0.78         |
| PR-CREEK | 1110.72   | BASE      | 3.43             | 221.48            | 221.72            | 221.66            | 221.77            | 0.011638              | 1.65               | 2.08                 | 9.57              | 0.62         |
| PR-CREEK | 1037.67   | 100-YR    | 621.00           | 220.57            | 226.82            |                   | 227.11            | 0.001263              | 4.36               | 156.82               | 39.09             | 0.34         |
| PR-CREEK | 1037.67   | BANK-FULL | 12.50            | 220.57            | 221.11            |                   | 221.20            | 0.009544              | 2.43               | 5.14                 | 11.25             | 0.64         |
| PR-CREEK | 1037.67   | BASE      | 3.43             | 220.57            | 220.81            |                   | 220.85            | 0.013397              | 1.73               | 1.98                 | 9.41              | 0.66         |
| PR-CREEK | 941.1     | 100-YR    | 621.00           | 219.80            | 226.79            |                   | 226.99            | 0.000763              | 3.61               | 189.32               | 42.67             | 0.27         |
| PR-CREEK | 941.1     | BANK-FULL | 12.50            | 219.80            | 220.42            |                   | 220.49            | 0.005867              | 2.06               | 6.07                 | 11.86             | 0.51         |
| PR-CREEK | 941.1     | BASE      | 3.43             | 219.80            | 220.12            |                   | 220.14            | 0.004555              | 1.22               | 2.81                 | 10.03             | 0.41         |
| PR-CREEK | 857.83    | 100-YR    | 621.00           | 219.07            | 226.78            |                   | 226.92            | 0.000473              | 2.98               | 224.15               | 46.21             | 0.21         |
| PR-CREEK | 857.83    | BANK-FULL | 12.50            | 219.07            | 219.51            | 219.48            | 219.65            | 0.020016              | 3.08               | 4.05                 | 10.89             | 0.89         |
| PR-CREEK | 857.83    | BASE      | 3.43             | 219.07            | 219.25            | 219.25            | 219.34            | 0.033004              | 2.28               | 1.51                 | 9.32              | 1.00         |
| PR-CREEK | 785.54    | 100-YR    | 621.00           | 218.18            | 226.77            |                   | 226.88            | 0.000308              | 2.69               | 263.26               | 49.23             | 0.18         |
| PR-CREEK | 785.54    | BANK-FULL | 12.50            | 218.18            | 218.77            |                   | 218.85            | 0.006853              | 2.17               | 5.76                 | 11.70             | 0.54         |
| PR-CREEK | 785.54    | BASE      | 3.43             | 218.18            | 218.49            | 218.36            | 218.51            | 0.005328              | 1.28               | 2.68                 | 9.96              | 0.44         |
| PR-CREEK | 713.12    | 100-YR    | 621.00           | 217.58            | 226.77            |                   | 226.85            | 0.000215              | 2.31               | 301.05               | 53.18             | 0.15         |
| PR-CREEK | 713.12    | BANK-FULL | 12.50            | 217.58            | 218.07            |                   | 218.18            | 0.012806              | 2.65               | 4.71                 | 11.33             | 0.73         |
| PR-CREEK | 713.12    | BASE      | 3.43             | 217.58            | 217.79            | 217.76            | 217.85            | 0.018791              | 1.90               | 1.80                 | 9.60              | 0.77         |
| PR-CREEK | 657.59    | 100-YR    | 621.00           | 216.87            | 226.77            |                   | 226.84            | 0.000168              | 2.14               | 327.47               | 54.06             | 0.13         |
| PR-CREEK | 657.59    | BANK-FULL | 12.50            | 216.87            | 217.36            |                   | 217.47            | 0.012841              | 2.69               | 4.65                 | 10.95             | 0.73         |
| PR-CREEK | 657.59    | BASE      | 3.43             | 216.87            | 217.13            | 217.05            | 217.17            | 0.008690              | 1.51               | 2.27                 | 9.58              | 0.55         |
| PR-CREEK | 612.11    | 100-YR    | 621.00           | 216.20            | 226.78            |                   | 226.83            | 0.000124              | 1.76               | 366.44               | 57.03             | 0.11         |
| PR-CREEK | 612.11    | BANK-FULL | 12.50            | 216.20            | 216.65            |                   | 216.79            | 0.018091              | 3.01               | 4.15                 | 10.72             | 0.85         |
| PR-CREEK | 612.11    | BASE      | 3.43             | 216.20            | 216.38            | 216.38            | 216.46            | 0.033286              | 2.31               | 1.49                 | 9.10              | 1.01         |
| PR-CREEK | 587.14    | 100-YR    | 621.00           | 215.76            | 226.78            |                   | 226.82            | 0.000098              | 1.72               | 398.80               | 59.71             | 0.10         |
| PR-CREEK | 587.14    | BANK-FULL | 12.50            | 215.76            | 216.63            |                   | 216.65            | 0.001693              | 1.35               | 9.29                 | 13.47             | 0.29         |
| PR-CREEK | 587.14    | BASE      | 3.43             | 215.76            | 216.08            | 215.94            | 216.11            | 0.004165              | 1.18               | 2.90                 | 10.14             | 0.39         |
| PR-CREEK | 512.85    | 100-YR    | 621.00           | 215.42            | 226.78            | 219.11            | 226.81            | 0.000107              | 1.50               | 413.90               | 60.51             | 0.10         |
| PR-CREEK | 512.85    | BANK-FULL | 12.50            | 215.42            | 216.56            | 215.83            | 216.58            | 0.000645              | 0.96               | 12.96                | 14.96             | 0.18         |
| PR-CREEK | 512.85    | BASE      | 3.43             | 215.42            | 216.01            | 215.61            | 216.01            | 0.000559              | 0.61               | 5.60                 | 11.53             | 0.16         |
| PR-CREEK | 482       | Culvert   |                  |                   |                   |                   |                   |                       |                    |                      |                   |              |
| PR-CREEK | 421.84    | 100-YR    | 621.00           | 213.80            | 217.79            | 217.49            | 218.76            | 0.010198              | 7.90               | 78.59                | 29.97             | 0.86         |
| PR-CREEK | 421.84    | BANK-FULL | 12.50            | 213.80            | 214.34            |                   | 214.43            | 0.009694              | 2.45               | 5.10                 | 11.19             | 0.64         |
| PR-CREEK | 421.84    | BASE      | 3.43             | 213.80            | 214.05            |                   | 214.09            | 0.010808              | 1.62               | 2.12                 | 9.47              | 0.60         |
| PR-CREEK | 368.44    | 100-YR    | 621.00           | 213.18            | 216.86            | 216.86            | 218.09            | 0.014312              | 8.90               | 69.81                | 28.82             | 1.01         |
| PR-CREEK | 368.44    | BANK-FULL | 12.50            | 213.18            | 213.65            |                   | 213.78            | 0.015511              | 2.86               | 4.37                 | 10.85             | 0.79         |
| PR-CREEK | 368.44    | BASE      | 3.43             | 213.18            | 213.42            |                   | 213.46            | 0.013160              | 1.72               | 1.99                 | 9.43              | 0.66         |
| PR-CREEK | 310.56    | 100-YR    | 621.00           | 212.05            | 215.34            | 215.73            | 217.02            | 0.022628              | 10.38              | 59.83                | 27.79             | 1.25         |
| PR-CREEK | 310.56    | BANK-FULL | 12.50            | 212.05            | 212.46            | 212.46            | 212.64            | 0.026037              | 3.37               | 3.71                 | 10.65             | 1.01         |
| PR-CREEK | 310.56    | BASE      | 3.43             | 212.05            | 212.24            | 212.24            | 212.32            | 0.032841              | 2.28               | 1.50                 | 9.28              | 1.00         |
| PR-CREEK | 263.41    | 100-YR    | 621.00           | 210.61            | 213.73            | 214.29            | 215.77            | 0.029453              | 11.45              | 54.23                | 26.49             | 1.41         |
| PR-CREEK | 263.41    | BANK-FULL | 12.50            | 210.61            | 211.07            | 211.01            | 211.20            | 0.016442              | 2.92               | 4.28                 | 10.76             | 0.82         |
| PR-CREEK | 263.41    | BASE      | 3.43             | 210.61            | 210.82            | 210.78            | 210.88            | 0.017891              | 1.90               | 1.81                 | 9.27              | 0.76         |
| PR-CREEK | 191.5     | 100-YR    | 621.00           | 209.15            | 212.79            | 212.84            | 214.07            | 0.015189              | 9.09               | 68.31                | 28.54             | 1.04         |
| PR-CREEK | 191.5     | BANK-FULL | 12.50            | 209.15            | 209.55            | 209.55            | 209.73            | 0.025520              | 3.38               | 3.70                 | 10.39             | 1.00         |
| PR-CREEK | 191.5     | BASE      | 3.43             | 209.15            | 209.34            | 209.33            | 209.41            | 0.023583              | 2.08               | 1.65                 | 9.13              | 0.86         |
| PR-CREEK | 133.35    | 100-YR    | 621.00           | 207.47            | 210.51            | 211.16            | 212.73            | 0.033215              | 11.94              | 52.03                | 26.16             | 1.49         |
| PR-CREEK | 133.35    | BANK-FULL | 12.50            | 207.47            | 207.85            | 207.87            | 208.06            | 0.032533              | 3.65               | 3.42                 | 10.26             | 1.12         |
| PR-CREEK | 133.35    | BASE      | 3.43             | 207.47            | 207.64            | 207.64            | 207.73            | 0.036120              | 2.37               | 1.45                 | 9.02              | 1.04         |
| PR-CREEK | 72.46     | 100-YR    | 621.00           | 205.53            | 208.62            | 209.22            | 210.73            | 0.031301              | 11.68              | 53.18                | 26.41             | 1.45         |
| PR-CREEK | 72.46     | BANK-FULL | 12.50            | 205.53            | 205.91            | 205.93            | 206.11            | 0.031127              | 3.60               | 3.47                 | 10.29             | 1.09         |
| PR-CREEK | 72.46     | BASE      | 3.43             | 205.53            | 205.73            | 205.70            | 205.79            | 0.021212              | 2.01               | 1.71                 | 9.20              | 0.82         |
| PR-CREEK | 0         | 100-YR    | 621.00           | 204.04            | 207.66            | 207.73            | 208.96            | 0.015333              | 9.16               | 67.80                | 28.16             | 1.04         |
| PR-CREEK | 0         | BANK-FULL | 12.50            | 204.04            | 204.47            | 204.44            | 204.62            | 0.020012              | 3.11               | 4.01                 | 10.61             | 0.89         |
| PR-CREEK | 0         | BASE      | 3.43             | 204.04            | 204.22            | 204.22            | 204.30            | 0.020007              | 1.97               | 1.74                 | 9.23              | 0.80         |

Errors Warnings and Notes for Plan : 2

|           |                                                                                                                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location: | River: PR-UNT Reach: PR-CREEK RS: 1110.72 Profile: 100-YR                                                                                                                                                                                                               |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 1037.67 Profile: BASE                                                                                                                                                                                                                 |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 941.1 Profile: BANK-FULL                                                                                                                                                                                                              |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 941.1 Profile: BASE                                                                                                                                                                                                                   |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 857.83 Profile: BANK-FULL                                                                                                                                                                                                             |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 857.83 Profile: BASE                                                                                                                                                                                                                  |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.                                                                                      |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Warning:  | During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 785.54 Profile: BASE                                                                                                                                                                                                                  |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 713.12 Profile: BASE                                                                                                                                                                                                                  |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 657.59 Profile: BASE                                                                                                                                                                                                                  |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 612.11 Profile: BANK-FULL                                                                                                                                                                                                             |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 612.11 Profile: BASE                                                                                                                                                                                                                  |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.                                                                                      |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Warning:  | During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 587.14 Profile: BANK-FULL                                                                                                                                                                                                             |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 587.14 Profile: BASE                                                                                                                                                                                                                  |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 482 Profile: 100-YR                                                                                                                                                                                                                   |
| Note:     | During the supercritical calculations a hydraulic jump occurred at the outlet of (leaving) the culvert.                                                                                                                                                                 |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 482 Profile: 100-YR Culv: Culvert #1                                                                                                                                                                                                  |
| Warning:  | During the supercritical analysis, the program could not converge on a supercritical answer in the                                                                                                                                                                      |

Errors Warnings and Notes for Plan : 2 (Continued)

|           |                                                                                                                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | downstream cross section. The program used the solution with the least error.                                                                                                                                                                                           |
| Note:     | The flow in the culvert is entirely supercritical.                                                                                                                                                                                                                      |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 482 Profile: BANK-FULL                                                                                                                                                                                                                |
| Note:     | During the supercritical calculations a hydraulic jump occurred at the outlet of (leaving) the culvert.                                                                                                                                                                 |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 482 Profile: BANK-FULL Culv: Culvert #1                                                                                                                                                                                               |
| Warning:  | During the supercritical analysis, the program could not converge on a supercritical answer in the downstream cross section. The program used the solution with the least error.                                                                                        |
| Note:     | The flow in the culvert is entirely supercritical.                                                                                                                                                                                                                      |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 482 Profile: BASE                                                                                                                                                                                                                     |
| Note:     | During the supercritical calculations a hydraulic jump occurred at the outlet of (leaving) the culvert.                                                                                                                                                                 |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 482 Profile: BASE Culv: Culvert #1                                                                                                                                                                                                    |
| Warning:  | During the supercritical analysis, the program could not converge on a supercritical answer in the downstream cross section. The program used the solution with the least error.                                                                                        |
| Note:     | During supercritical analysis, the culvert direct step method went to normal depth. The program then assumed normal depth at the outlet.                                                                                                                                |
| Note:     | The flow in the culvert is entirely supercritical.                                                                                                                                                                                                                      |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 368.44 Profile: 100-YR                                                                                                                                                                                                                |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.                                                                                      |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Warning:  | During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 368.44 Profile: BANK-FULL                                                                                                                                                                                                             |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 368.44 Profile: BASE                                                                                                                                                                                                                  |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 310.56 Profile: 100-YR                                                                                                                                                                                                                |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 310.56 Profile: BANK-FULL                                                                                                                                                                                                             |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.                                                                                      |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Warning:  | During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 310.56 Profile: BASE                                                                                                                                                                                                                  |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.                                                                                      |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Warning:  | During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 263.41 Profile: 100-YR                                                                                                                                                                                                                |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.                                                                                                                                                                        |

Errors Warnings and Notes for Plan : 2 (Continued)

|           |                                                                                                                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | This may indicate the need for additional cross sections.                                                                                                                                                                                                               |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 263.41 Profile: BANK-FULL                                                                                                                                                                                                             |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.                                                                                                                                                                        |
|           | This may indicate the need for additional cross sections.                                                                                                                                                                                                               |
| Note:     | Hydraulic jump has occurred between this cross section and the previous upstream section.                                                                                                                                                                               |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 263.41 Profile: BASE                                                                                                                                                                                                                  |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.                                                                                                                                                                        |
|           | This may indicate the need for additional cross sections.                                                                                                                                                                                                               |
| Note:     | Hydraulic jump has occurred between this cross section and the previous upstream section.                                                                                                                                                                               |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 191.5 Profile: 100-YR                                                                                                                                                                                                                 |
| Warning:  | The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.                                                                                                                                                   |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.                                                                                                                                                                        |
|           | This may indicate the need for additional cross sections.                                                                                                                                                                                                               |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 191.5 Profile: BANK-FULL                                                                                                                                                                                                              |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.                                                                                      |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.                                                                                                                                                                        |
|           | This may indicate the need for additional cross sections.                                                                                                                                                                                                               |
| Warning:  | During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 191.5 Profile: BASE                                                                                                                                                                                                                   |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.                                                                                                                                                                        |
|           | This may indicate the need for additional cross sections.                                                                                                                                                                                                               |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 133.35 Profile: 100-YR                                                                                                                                                                                                                |
| Warning:  | The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.                                                                                                                                                   |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.                                                                                                                                                                        |
|           | This may indicate the need for additional cross sections.                                                                                                                                                                                                               |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 133.35 Profile: BANK-FULL                                                                                                                                                                                                             |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.                                                                                                                                                                        |
|           | This may indicate the need for additional cross sections.                                                                                                                                                                                                               |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 133.35 Profile: BASE                                                                                                                                                                                                                  |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.                                                                                      |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.                                                                                                                                                                        |
|           | This may indicate the need for additional cross sections.                                                                                                                                                                                                               |
| Warning:  | During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 72.46 Profile: 100-YR                                                                                                                                                                                                                 |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.                                                                                                                                                                        |
|           | This may indicate the need for additional cross sections.                                                                                                                                                                                                               |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 72.46 Profile: BANK-FULL                                                                                                                                                                                                              |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.                                                                                                                                                                        |
|           | This may indicate the need for additional cross sections.                                                                                                                                                                                                               |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 72.46 Profile: BASE                                                                                                                                                                                                                   |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.                                                                                                                                                                        |
|           | This may indicate the need for additional cross sections.                                                                                                                                                                                                               |
| Note:     | Hydraulic jump has occurred between this cross section and the previous upstream section.                                                                                                                                                                               |

Errors Warnings and Notes for Plan : 2 (Continued)

|           |                                                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location: | River: PR-UNT Reach: PR-CREEK RS: 0 Profile: 100-YR                                                                                                                         |
| Warning:  | The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.                                                       |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m) between the current and previous cross section. This may indicate the need for additional cross sections.                   |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 0 Profile: BANK-FULL                                                                                                                      |
| Note:     | Hydraulic jump has occurred between this cross section and the previous upstream section.                                                                                   |

## **Appendix D**

### **Maintenance Plan**

The proposed restored channel is designed for an indefinite lifespan, however, field inspection is needed to confirm the stability and functionality to safely pass the flow. Field inspection will be used to gather data and develop understanding of active process and conditions. Personnel with sufficient experience shall look for potential geomorphological landform, destabilizing phenomena, erosion signs, sediment storage, deposition patterns etc.

The safety of the inspection is critical and therefore the inspections shall be conducted during low flow conditions and dormant season. There should be at least a team of two persons with proper equipment for the task.

Basic information to be collected during inspection:

- Measurement of low flow and bank-full channel dimensions and channel slope in critical reaches.
- Identification of terraces and active floodplains.
- Characterization of channel bed and banks. Check gradation by collecting samples from the bed.
- Description of bank profiles, and check for structural or erosional signs of failure
- Description of point bars, pools, riffles, bed instability, and evidence of sedimentation process.
- Observation of impacts due to channel alterations and evidence of stream recovery
- Description of channel debris and bed and bank vegetation.
- Photographic record of critical stream and floodplain characteristics.

For consistency of the investigation, it is recommended that same team do the entire study as feasible. The team shall walk the entire reach, including upstream and downstream of the channel, and document the observations in form of notes.

The channel is designed as a stable channel. Which implies there is balance between slopes and sediment sizes. As long as the stability of bed and banks is maintained, the channel would have adequate hydraulic capacity to pass the design discharge and would also avert contaminating the downstream with extra sediment loads. The following table summarizes evidence of degradation, aggradation, and stability for reference.

## Possible Field Indicators of River Stability/Instability

|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Evidence of Degradation</b> | <ul style="list-style-type: none"> <li>Terraces (abandoned floodplains)</li> <li>Perched channels or tributaries</li> <li>Headcuts and knickpoints</li> <li>Exposed pipe crossings</li> <li>Suspended culvert outfalls and ditches</li> <li>Undercut bridge piers</li> <li>Exposed or "air" tree roots</li> <li>Leaning trees</li> <li>Narrow/deep channel</li> <li>Banks undercut, both sides</li> <li>Armored bed</li> <li>Hydrophytic vegetation located high on bank</li> </ul>                            |
| <b>Evidence of Aggradation</b> | <ul style="list-style-type: none"> <li>Buried structures such as culverts and outfalls</li> <li>Reduced bridge clearance</li> <li>Presence of midchannel bars</li> <li>Outlet of tributaries buried in sediment</li> <li>Sediment deposition in floodplain</li> <li>Buried vegetation</li> <li>Perched main channel</li> <li>Significant backwater in tributaries</li> <li>Uniform sediment deposition across the channel</li> <li>Hydrophobic vegetation located low on bank or dead in floodplain</li> </ul> |
| <b>Evidence of Stability</b>   | <ul style="list-style-type: none"> <li>Vegetated bars and banks</li> <li>Limited bank erosion</li> <li>Older bridges, culverts and outfalls with bottom elevations at or near grade</li> <li>Mouth of tributaries at or near existing main stem stream grade</li> <li>No exposed pipeline crossings</li> </ul>                                                                                                                                                                                                 |

## **Appendix E**

### **FEMA Map and Report**

## NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The **community map repository** should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the **Flood Profiles and Floodway Data** and/or **Summary of Stillwater Elevations** tables contained within the **Flood Insurance Study** (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

**Coastal Base Flood Elevations** shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the **Summary of Stillwater Elevations** tables in the **Flood Insurance Study** report for this jurisdiction. Elevations shown in the **Summary of Stillwater Elevations** tables should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the **Flood Insurance Study** report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control structures**. Refer to Section 2.4 "Flood Protection Measures" of the **Flood Insurance Study** report for information on flood control structures for this jurisdiction.

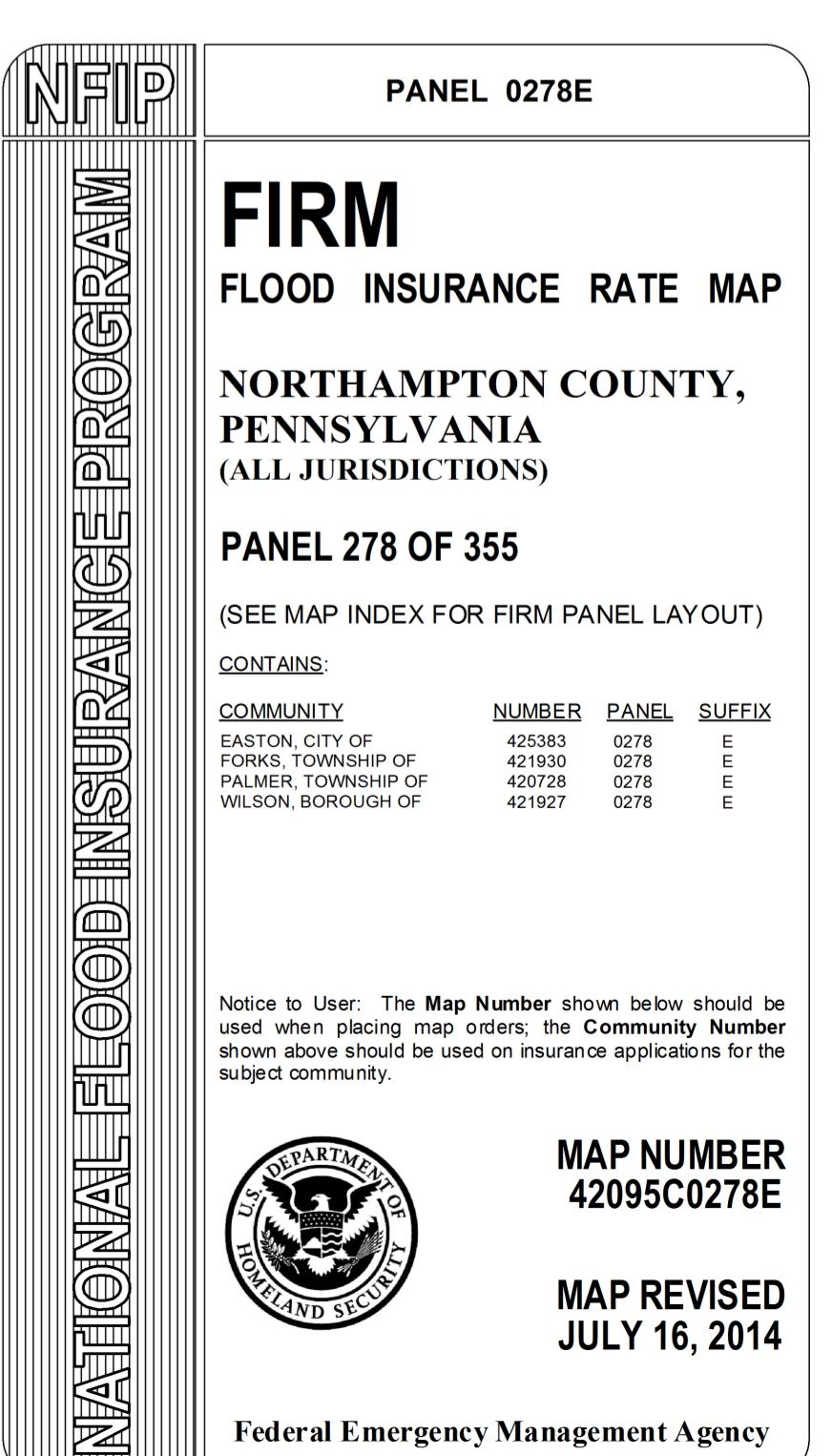
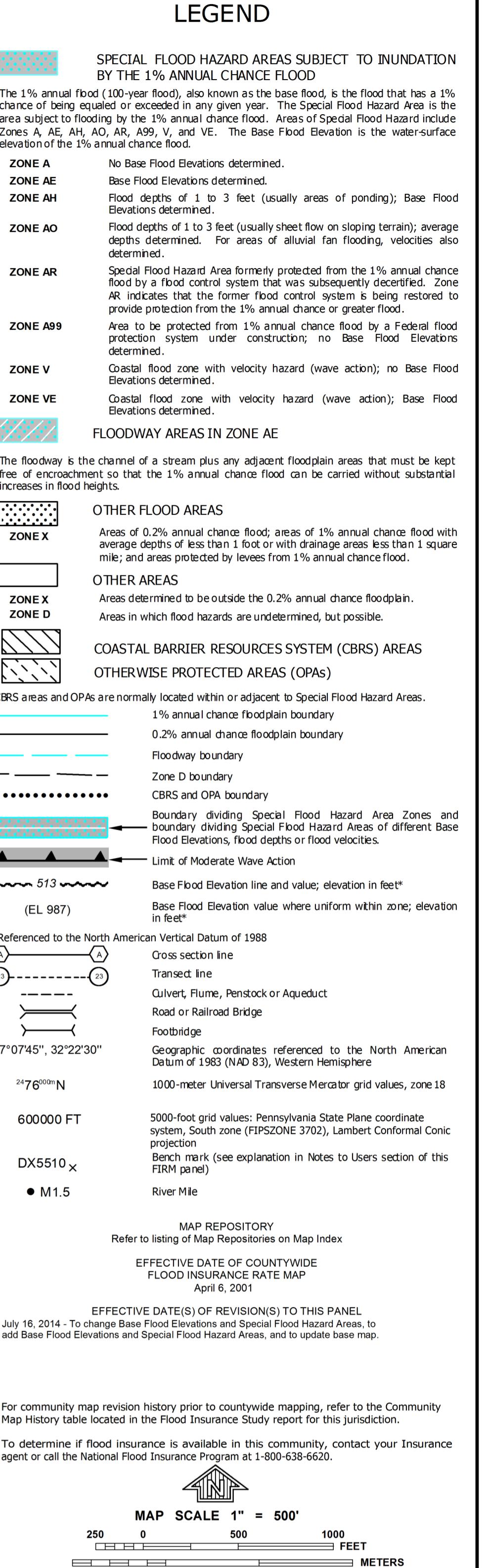
The projection used in the preparation of this map was Pennsylvania State Plane South zone (FIPSZONE 3702). The **horizontal datum** was NAD 83, GRS80 spheroid. Differences in datum, spheroid, projection or State Plane zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same **vertical datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at <http://www.ngs.noaa.gov> or contact the National Geodetic Survey at the following address:

NGS Information Services  
NOAA/NNGS12  
National Geodetic Survey  
SSMC3, Room 100  
1315 East-West Highway  
Silver Spring, Maryland 20910-3282  
(301) 713-3242

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at <http://www.ngs.noaa.gov>.

Base map information shown on this FIRM was originated from PAMAP Program, PA Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey. The imagery was derived from aerial photography flown at 1-foot ground sample distance in April 2008.



Based on updated topographic information, this map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. As a result, the Flood Profiles and Floodway Data tables in the **Flood Insurance Study** Report (which contains authoritative hydraulic data) reflect stream channel distances that differ from what is shown on this map. Also, the road to floodplain relationships for unruled streams may differ from what is shown on previous maps.

**Corporate limits** shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a **listing of communities** table containing National Flood Insurance Program data for each community as well as a listing of the panels on which each community is located.

For information on available products associated with this FIRM visit the **Map Service Center (MSC)** website at <http://msc.fema.gov>. Available products may include previously issued Letters of Map Change, a **Flood Insurance Study** Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the MSC website.

If you have **questions about this map**, how to order products or the National Flood Insurance Program in general, please call the **FEMA Map Information eXchange (FMIX)** at 1-877-FEMA-MAP (1-877-336-2627) or visit the **FEMA** website at <http://www.fema.gov/business/fmp>.



# FLOOD INSURANCE STUDY

VOLUME 1 OF 2



## NORTHAMPTON COUNTY, PENNSYLVANIA (ALL JURISDICTIONS)



| COMMUNITY NAME                  | COMMUNITY NUMBER | COMMUNITY NAME                  | COMMUNITY NUMBER |
|---------------------------------|------------------|---------------------------------|------------------|
| ALLEN, TOWNSHIP OF              | 421928           | MOORE, TOWNSHIP OF              | 420983           |
| BANGOR, BOROUGH OF              | 420716           | NAZARETH, BOROUGH OF            | 420725           |
| BATH, BOROUGH OF                | 420717           | NORTH CATASAUQUA, BOROUGH OF    | 420727           |
| BETHLEHEM, CITY OF              | 420718           | NORTHAMPTON, BOROUGH OF         | 420726           |
| BETHLEHEM, TOWNSHIP OF          | 420980           | PALMER, TOWNSHIP OF             | 420728           |
| BUSHKILL, TOWNSHIP OF           | 421929           | PEN ARGYL, BOROUGH OF           | 421926           |
| CHAPMAN, BOROUGH OF             | 422251           | PLAINFIELD, TOWNSHIP OF         | 421147           |
| EAST ALLEN, TOWNSHIP OF         | 420981           | PORTLAND, BOROUGH OF            | 420729           |
| EAST BANGOR, BOROUGH OF         | 422252           | ROSETO, BOROUGH OF              | 422255           |
| EASTON, CITY OF                 | 425383           | STOCKERTOWN, BOROUGH OF         | 420730           |
| FORKS, TOWNSHIP OF              | 421930           | TATAMY, BOROUGH OF              | 420731           |
| FREEMANSBURG, BOROUGH OF        | 420721           | UPPER MOUNT BETHEL, TOWNSHIP OF | 421933           |
| GLENDON, BOROUGH OF             | 422254           | UPPER NAZARETH, TOWNSHIP OF     | 421934           |
| HANOVER, TOWNSHIP OF            | 420722           | WALNUTPORT, BOROUGH OF          | 420732           |
| HELLERTOWN, BOROUGH OF          | 420723           | WASHINGTON, TOWNSHIP OF         | 421156           |
| LEHIGH, TOWNSHIP OF             | 421931           | WEST EASTON, BOROUGH OF         | 420733           |
| LOWER MOUNT BETHEL, TOWNSHIP OF | 420724           | WILLIAMS, TOWNSHIP OF           | 421036           |
| LOWER NAZARETH, TOWNSHIP OF     | 422253           | WILSON, BOROUGH OF              | 421927           |
| LOWER SAUCON, TOWNSHIP OF       | 420982           | WIND GAP, BOROUGH OF            | 420734           |

REVISED:  
JULY 16, 2014

Federal Emergency Management Agency

FLOOD INSURANCE STUDY NUMBER

42095CV001A



**NOTICE TO  
FLOOD INSURANCE STUDY USERS**

Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) may not contain all data available within the repository. It is advisable to contact the community repository for any additional data.

Part or all of this FIS may be revised and republished at any time. In addition, part of this FIS may be revised by the Letter of Map Revision process, which does not involve republication or redistribution of the FIS. It is, therefore, the responsibility of the user to consult with community officials and to check the community repository to obtain the most current FIS components.

Initial Countywide FIS Effective Date: April 6, 2001

Revised Countywide FIS Effective Date: July 16, 2014

## TABLE OF CONTENTS – Volume 1 – July 16, 2014

|                                               | <u>Page</u> |
|-----------------------------------------------|-------------|
| 1.0 <u>INTRODUCTION</u>                       | 1           |
| 1.1    Purpose of Study                       | 1           |
| 1.2    Authority and Acknowledgments          | 1           |
| 1.3    Coordination                           | 7           |
| 2.0 <u>AREA STUDIED</u>                       | 9           |
| 2.1    Scope of Study                         | 9           |
| 2.2    Community Description                  | 10          |
| 2.3    Principal Flood Problems               | 10          |
| 2.4    Flood Protection Measures              | 11          |
| 3.0 <u>ENGINEERING METHODS</u>                | 12          |
| 3.1    Hydrologic Analyses                    | 12          |
| 3.2    Hydraulic Analyses                     | 24          |
| 3.3    Vertical Datum                         | 30          |
| 4.0 <u>FLOODPLAIN MANAGEMENT APPLICATIONS</u> | 31          |
| 4.1    Floodplain Boundaries                  | 31          |
| 4.2    Floodways                              | 32          |
| 5.0 <u>INSURANCE APPLICATIONS</u>             | 55          |
| 6.0 <u>FLOOD INSURANCE RATE MAP</u>           | 57          |
| 7.0 <u>OTHER STUDIES</u>                      | 57          |
| 8.0 <u>LOCATION OF DATA</u>                   | 61          |
| 9.0 <u>BIBLIOGRAPHY AND REFERENCES</u>        | 61          |

## TABLE OF CONTENTS – Volume 1 - continued

|                                                        | <u>Page</u> |
|--------------------------------------------------------|-------------|
| <b><u>FIGURES</u></b>                                  |             |
| Figure 1 – Floodway Schematic                          | 55          |
| <b><u>TABLES</u></b>                                   |             |
| Table 1 – CCO Meeting Dates                            | 8           |
| Table 2 – Flooding Sources Studied by Detailed Methods | 9           |
| Table 3 – Summary of Discharges                        | 19-24       |
| Table 4 – Manning’s ‘n’ Values                         | 29          |
| Table 5 – Floodway Data                                | 34-54       |
| Table 6 – Community Map History                        | 58-60       |

## EXHIBITS

|                            |                |
|----------------------------|----------------|
| Exhibit 1 – Flood Profiles |                |
| Black River                | Panels 01P-05P |
| Bushkill Creek Reach 1     | Panels 06P-09P |
| Bushkill Creek Reach 2     | Panels 10P-11P |
| Bushkill Creek Reach 3     | Panels 12P-13P |
| Catasauqua Creek           | Panel 14P      |
| Delaware River             | Panels 15P-29P |

## TABLE OF CONTENTS – Volume 2 – July 16, 2014

## EXHIBITS - continued

|                                        |                |
|----------------------------------------|----------------|
| Exhibit 1 – Flood Profiles (continued) |                |
| East Branch Monocacy Creek             | Panels 30P-31P |
| Hokendauqua Creek Reach 1              | Panels 32P-33P |
| Hokendauqua Creek Reach 2              | Panels 34P-35P |
| Hokendauqua Creek Reach 3              | Panels 36P-40P |
| Jacoby Creek                           | Panels 41P-45P |
| Lehigh River                           | Panels 46P-58P |
| Little Bushkill Creek                  | Panels 59P-61P |
| Little Martins Creek                   | Panel 62P      |
| Martins Creek Reach 1                  | Panels 63P-64P |
| Martins Creek Reach 2                  | Panels 65P-70P |
| Monocacy Creek Reach 1                 | Panels 71P-81P |

**TABLE OF CONTENTS - Volume 2 - continued**

**EXHIBITS - continued**

|                                        |                  |
|----------------------------------------|------------------|
| Exhibit 1 – Flood Profiles (continued) |                  |
| Monocacy Creek Reach 2                 | Panels 82P-84P   |
| Nancy Run                              | Panels 85P-90P   |
| Saucon Creek                           | Panels 91P-96P   |
| Shoeneck Creek                         | Panels 97P-100P  |
| Silver Creek                           | Panel 101P       |
| Unnamed Tributary to East Branch       |                  |
| Monocacy Creek                         | Panel 102P       |
| Unnamed Tributary to                   |                  |
| Martins Creek Reach 2                  | Panel 103P       |
| Unnamed Tributary to                   |                  |
| Waltz Creek                            | Panel 104P       |
| Waltz Creek                            | Panels 105P-107P |
| West Branch Little Bushkill Creek      | Panels 108P-109P |

|                                            |  |
|--------------------------------------------|--|
| Exhibit 2 – Flood Insurance Rate Map Index |  |
| Flood Insurance Rate Map                   |  |

**FLOOD INSURANCE STUDY  
NORTHAMPTON COUNTY, PENNSYLVANIA (ALL JURISDICTIONS)**

**1.0 INTRODUCTION**

**1.1 Purpose of Study**

This countywide Flood Insurance Study (FIS) investigates the existence and severity of flood hazards in, or revises previous FISs/Flood Insurance Rate Maps (FIRMs) for the geographic area of Northampton County, Pennsylvania, including: the Boroughs of Bangor, Bath, Chapman, East Bangor, Freemansburg, Glendon, Hellertown, Nazareth, North Catasauqua, Northampton, Pen Argyl, Portland, Roseto, Stockertown, Tatamy, Walnutport, West Easton, Wilson, and Wind Gap; the Cities of Bethlehem and Easton; and the Townships of Allen, Bethlehem, Bushkill, East Allen, Forks, Hanover, Lehigh, Lower Mount Bethel, Lower Nazareth, Lower Saucon, Moore, Palmer, Plainfield, Upper Mount Bethel, Upper Nazareth, Washington, and Williams (hereinafter referred to collectively as Northampton County).

The City of Bethlehem is located in more than one county, but is included in its entirety in the Northampton County FIS.

This FIS aids in the administration of the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973. This study has developed flood risk data for various areas of the community that will be used to establish actuarial flood insurance rates. This information will also be used by Northampton County to update existing floodplain regulations as part of the Regular Phase of the National Flood Insurance Program (NFIP), and by local and regional planners to further promote sound land use and floodplain development. Minimum floodplain management requirements for participation in the NFIP are set forth in the Code of Federal Regulations at 44 CFR, 60.3.

In some States or communities, floodplain management criteria or regulations may exist that are more restrictive or comprehensive than the minimum Federal requirements. In such cases, the more restrictive criteria take precedence and the State (or other jurisdictional agency) will be able to explain them.

**1.2 Authority and Acknowledgments**

The sources of authority for this FIS are the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973.

The original April 6, 2001 Countywide FIS study was prepared to include incorporated communities within Northampton County into a countywide format FIS. Information on the authority and acknowledgments for each jurisdiction included in this countywide FIS, as compiled from their previously printed FIS report narratives, is shown on the following pages.

Allen, Township of:

the hydrologic and hydraulic analyses for the original FIS report dated November 19, 1980, were performed by Pickering, Corts, and Summerson, Inc., for the Federal Insurance Administration (FIA), under Contract No. H-4758. That work was completed in October 1979.

Bangor, Borough of:

the survey and topographic data for the original FIS report dated August 1976 were collected and compiled by Geod Corporation, Oak Ridge, New Jersey, under subcontract from Goodkind & O'Dea, Inc. (Contract H-3747).

Bath, Borough of:

the hydrologic and hydraulic analyses for the original FIS report dated February 17, 1988, were prepared by the U.S. Geological Survey (USGS) for the Federal Emergency Management Agency (FEMA), under Inter-Agency Agreement No. EMW-85-E-1823, Project Order No. 6. That work was completed in September 1986.

Bethlehem, City of:

the hydrologic and hydraulic analyses for the original FIS report dated January 1978 were prepared by the Delaware River Basin Commission for the FIA, under Contract No. H-3747. That work was completed in September 1976.

Bethlehem, Township of:

the hydrologic and hydraulic analyses for the original FIS report dated December 1979 were prepared by the Delaware River Basin Commission for the FIA, under Contract No. H-4521. That work was completed in July 1978.

Bushkill, Township of:

the hydrologic and hydraulic analyses for the original FIS report dated March 4, 1988, were prepared by the USGS for FEMA, under Inter-Agency Agreement No. EMW-85-E-1823, Project Order No. 6. That work was completed in October 1986.

Easton, City of:

the hydrologic and hydraulic analyses for the original FIS report dated March 1979 were prepared by the USGS, Water Resources Division, for the FIA, under

Inter-Agency Agreement No. IAA-H-8-76, Project Order No. 3. That work was completed in June 1977.

Forks, Township of:

the hydrologic and hydraulic analyses for the original FIS report dated January 1980 were prepared by the Delaware River Basin Commission for the FIA, under Contract No. H-4521. That work was completed in November 1978.

Freemansburg, Borough of:

the original FIS report dated September 1977 was conducted by the Delaware River Basin Commission at the request of the Federal Insurance Administration, U.S. Department of Housing and Urban Development, under Contract No. H-3747.

Glendon, Borough of:

the hydrologic and hydraulic analyses for the original FIS report dated July 1979 were prepared by the Delaware River Basin Commission for the FIA under Contract No. H-4521. That work was completed in June 1978.

Hanover, Township of:

the original FIS report dated August 1977 was prepared by the Delaware River Basin Commission at the request of the FIA, U.S. Department of Housing and Urban Development, under Contract No. H-3747.

Hellertown, Borough of:

the hydrologic and hydraulic analyses for the original FIS report dated March 1979 were prepared by the U.S. Army Corps of Engineers, (USACE), Philadelphia District, for the FIA, under Inter-Agency Agreement No. IAA-H-16-75, Project Order No. 6. That work was completed in February 1978.

Lehigh, Township of:

the hydrologic and hydraulic analyses for the original FIS report dated June 15, 1981, were prepared by Pickering, Corts and Summerson, Inc., for FEMA, under Contract No. H-4758. That work was completed in October 1979.

Lower Mount Bethel, Township of:

the hydrologic and hydraulic analyses for the original FIS report dated October 30, 1981, represent a revision of the original

analyses by the Delaware River Basin Commission for FEMA, under Contract No. H-3747. The revised analyses for the Delaware River, taken from the FIS for the Township of Harmony, New Jersey, were conducted by Michael Baker, Jr., Inc., under subcontract to the New Jersey Department of Environmental Protection, Division of Water Resources, under Contract No. H-3959. That work was completed in August 1978. The revised study was prepared by Gannett Fleming Corddry and Carpenter, under agreement with FEMA.

Lower Nazareth, Township of:

the hydrologic and hydraulic analyses for the original FIS report dated May 4, 1988, were prepared by the USGS for FEMA, under Inter-Agency Agreement No. EMW-85-E-1823, Project Order No. 6. That work was completed in October 1986.

Lower Saucon, Township of:

the hydrologic and hydraulic analyses for the original FIS report dated March 1979 were prepared by the USACE, Philadelphia District, for the FIA, under Inter-Agency Agreement No. IAA-H-16-75, Project Order No. 16. That work was completed in October 1977.

Moore, Township of:

the hydrologic and hydraulic analyses for the original FIS report dated April 1978 were prepared by Gannett Fleming Corddry and Carpenter, Inc., for the FIA, under Contract No. H-3812. That work was completed in April 1977.

North Catasauqua, Borough of:

the hydrologic and hydraulic analyses for the original FIS report dated January 16, 1981, were prepared by the USACE, Philadelphia District, for the FIA, under Inter-Agency Agreement No. IAA-H-18-78. That work was completed in January 1980.

Northampton, Borough of:

the hydrologic and hydraulic analyses for the original FIS report dated November 3, 1981, were prepared by the USACE, Philadelphia District, for the FIA, under Inter-Agency Agreement No. IAA-H-18-78,

|                                  |                                                                                                                                                                                                                                          |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Palmer, Township of:             | Project Order No. 22. That work was completed in February 1980.                                                                                                                                                                          |
| Plainfield, Township of:         | the original FIS report dated June 1976 was prepared by the USACE, Philadelphia District, at the request of the FIA, U.S. Department of Housing and Urban Development, under Inter-Agency Agreement No. IAA-H-2-73, Project Order No. 4. |
| Portland, Borough of:            | the hydrologic and hydraulic analyses for the original FIS report dated July 1979 were prepared by the Delaware River Basin Commission for the FIA, under Contract No. H-4521. That work was completed in June 1978.                     |
| Stockertown, Borough of:         | the hydrologic and hydraulic analyses for the original FIS report dated March 16, 1981, were prepared by Pickering, Corts and Summerson, Inc., for the FIA, under Contract No. H-4758. That work was completed in December 1979.         |
| Tatamy, Borough of:              | the hydrologic and hydraulic analyses for the original FIS report dated June 1979 were prepared by the Delaware River Basin Commission, for the FIA, under Contract No. H-4521. That work was completed in January 1978.                 |
| Upper Mount Bethel, Township of: | the hydrologic and hydraulic analyses for the original FIS report dated March 30, 1981, were prepared by Pickering, Corts & Summerson, Inc., for the FIA, under Contract No. H-4758. That work was completed in December 1979.           |
| Walnutport, Borough of:          | the hydrologic and hydraulic analyses for the original FIS report dated December 1977 were prepared by Gannett Fleming Corddry                                                                                                           |

and Carpenter, Inc., Harrisburg, Pennsylvania, for the FIA, under Contract No. H-3813. That work was completed in March 1977.

Washington, Township of:

the hydrologic and hydraulic analyses for the original FIS report dated September 30, 1988, were prepared by the USGS for FEMA, under Inter-Agency Agreement No. EMW-85-E-1823, Project Order No. 6. That work was completed in October 1986.

West Easton, Borough of:

the hydrologic and hydraulic analyses for the original FIS report dated September 1978 were prepared by the Delaware River Basin Commission, in January 1976, at the request of the FIA, U.S. Department of Housing and Urban Development, under Contract No. H-3747.

Williams, Township of:

the hydrologic and hydraulic analyses for the original FIS report dated March 1979 were prepared by the USACE, Philadelphia District, for the FIA, under Inter-Agency Agreement No. IAA-H-16-75, Project Order No. 16 and Inter-Agency Agreement No. IAA-H-7-76, Project Order No. 1. That work was completed in June 1977.

Wilson, Borough of:

the hydrologic and hydraulic analyses for the original FIS report dated July 1979 were prepared by the Delaware River Basin Commission for the FIA, under Contract No. H-4521. That work was completed in June 1977.

Wind Gap, Borough of:

the hydrologic and hydraulic analyses for the original FIS report dated May 16, 1994, were prepared by Pickering, Corts & Summerson, Inc., for the FIA, under Contract No. H-4758. That work was completed in November 1979.

The authority and acknowledgments for the City of Bethlehem; Boroughs of Chapman, East Bangor, Nazareth, Pen Argyl, and Roseto; and Townships of East Allen and Upper Nazareth are not included because there were no previously printed FIS reports for those communities.

For the April 6, 2001, countywide FIS, the hydrologic and hydraulic analyses for the Delaware River, Lehigh River, and Saucon Creek, were conducted by the USACE, Philadelphia District, for FEMA, under Inter-Agency Agreement No. EMW-95-E-4756, Project Order No. 9. This work was completed in December 1997.

For this revision, the hydrologic and hydraulic analyses for Nancy Run were conducted. The remaining streams studied by detailed methods were redelineated using Light Detection and Ranging (LiDAR) data flown in 2007. For streams studied with approximate methods, the 1-percent-annual-chance flood elevations were determined from the regional relationship between drainage area and flood depth prepared by the USGS. This relationship was developed by means of regional regression analyses of basin areas and the within channel 1-percent-annual-chance flood depths observed at stream gages. Depths were adjusted on the basis of hydraulic calculations to account for increased depth due to backwater from hydraulic structures, such as bridges and culverts. This work was performed by RAMPP (Risk Assessment, Mapping, and Planning Partners, a joint venture of Dewberry, URS, and ESP), Fairfax, Virginia, for FEMA, under Contract No. HSFEHQ-09-J-0369, Task Order HSFE03-09-J-0003B. This work was completed in August 2011. In addition, revised hydrologic and hydraulic analyses for the Delaware River were prepared for FEMA by T.Y. Lin International / Medina under Contract No. EMN-2003-CO-0005. This work was completed in June 2009.

The orthophotography base mapping was provided by the PAMAP Program, PA Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey. The orthoimagery was derived from aerial photography flown at 1-foot ground sample distance in April 2008.

The digital countywide FIRM was produced in Pennsylvania State Plane South Zone coordinate system (FIPSZONE 3702) with a Lambert Conformal Conic projection, units in feet, and referenced to the North American Datum of 1983 (NAD83), GRS80 spheroid. Differences in datum and spheroid used in the production of the FIRMs for adjacent counties may result in slight positional differences in map features at the county boundaries. These differences do not affect the accuracy of information shown on this FIRM.

### 1.3 Coordination

An initial Consultation Coordination Officer's (CCO) meeting is held with representatives from FEMA, the community, and the study contractor to explain the nature and purpose of a FIS, and to identify the streams to be studied by detailed methods. A final CCO meeting is held with representatives from FEMA, the community, and the study contractor to review the results of the study.

The dates of the pre-countywide initial and final CCO meetings held for the incorporated communities within the boundaries of Northampton County are shown in Table 1, "CCO Meeting Dates."

TABLE 1 – CCO MEETING DATES

| <u>Community Name</u>           | <u>Initial CCO Date</u> | <u>Final CCO Date</u> |
|---------------------------------|-------------------------|-----------------------|
| Allen, Township of              | May 9, 1978             | April 17, 1980        |
| Bangor, Borough of              | *                       | *                     |
| Bath, Borough of                | November 20, 1984       | March 26, 1987        |
| Bethlehem, City of              | *                       | April 17, 1976        |
| Bethlehem, Township of          | June 23, 1977           | April 30, 1979        |
| Bushkill, Township of           | November 20, 1984       | March 26, 1987        |
| Easton, City of                 | *                       | April 18, 1977        |
| Forks, Township of              | March 29, 1977          | April 30, 1979        |
| Freemansburg, Borough of        | *                       | March 22, 1976        |
| Glendon, Borough of             | *                       | February 6, 1979      |
| Hanover, Township of            | *                       | *                     |
| Hellertown, Borough of          | December 3, 1974        | *                     |
| Lehigh, Township of             | May 9, 1978             | April 23, 1980        |
| Lower Mount Bethel, Township of | November 11, 1974       | October 20, 1975      |
| Lower Nazareth, Township of     | November 20, 1984       | March 26, 1987        |
| Lower Saucon, Township of       | July 1, 1975            | November 16, 1978     |
| Moore, Township of              | October 1975            | July 20, 1977         |
| North Catasauqua, Borough of    | December 13, 1977       | July 30, 1980         |
| Northampton, Borough of         | December 13, 1977       | June 25, 1981         |
| Palmer, Township of             | *                       | December 9, 1975      |
| Plainfield, Township of         | June 23, 1977           | February 6, 1979      |
| Portland, Borough of            | May 10, 1978            | September 24, 1980    |
| Stockertown, Borough of         | *                       | October 31, 1978      |
| Tatamy, Borough of              | *                       | October 31, 1978      |
| Upper Mount Bethel, Township of | *                       | September 24, 1980    |
| Walnutport, Borough of          | *                       | May 5, 1977           |
| Washington, Township of         | November 20, 1984       | November 10, 1987     |
| West Easton, Borough of         | *                       | March 11, 1976        |
| Williams, Township of           | July 1, 1975            | August 25, 1978       |
| Wilson, Borough of              | March 28, 1977          | February 6, 1979      |
| Wind Gap, Borough of            | May 10, 1978            | April 23, 1980        |

\*Data not available

For the April 6, 2001, countywide FIS, initial CCO meetings were held on July 28, 1993, and July 6, 1994. A final CCO meeting was held on October 5, 1999, and was attended by representatives from the Township of East Allen, Borough of North Catasauqua, and the Township of Williams; USACE; and FEMA.

For this revision, the final CCO meeting was held on February 21, 2012, and was attended by representatives from the Boroughs of Bangor, Hellertown, Northampton, Tatamy, West Easton, and Wilson; the City of Bethlehem; and the Townships of Allen, Bethlehem, Bushkill, East Allen, Hanover, Lehigh, Lower Saucon, Moore, Plainfield, Upper Mount Bethel, Washington, and Williams; PA Department of Community and Economic Development; RAMPP; and FEMA.

## 2.0 AREA STUDIED

### 2.1 Scope of Study

This countywide FIS covers the geographic area of Northampton County, Pennsylvania.

All or portions of the flooding sources listed in Table 2, “Flooding Sources Studied by Detailed Methods”, were studied by detailed methods. Limits of detailed study are indicated on the Flood Profiles (Exhibit 1) and on the FIRM (Exhibit 2).

**TABLE 2 – FLOODING SOURCES STUDIED BY DETAILED METHODS**

|                           |                                                 |
|---------------------------|-------------------------------------------------|
| Black River               | Martins Creek Reach 2                           |
| Bushkill Creek Reach 1    | Monocacy Creek Reach 1                          |
| Bushkill Creek Reach 2    | Monocacy Creek Reach 2                          |
| Bushkill Creek Reach 3    | Nancy Run                                       |
| Catasauqua Creek          | Saucon Creek                                    |
| Delaware River            | Shoeneck Creek                                  |
| East Branch               | Silver Creek                                    |
| Monocacy Creek            | Unnamed Tributary to East Branch Monocacy Creek |
| Hokendauqua Creek Reach 1 | Unnamed Tributary to Martins Creek Reach 2      |
| Hokendauqua Creek Reach 2 | Unnamed Tributary to Waltz Creek                |
| Hokendauqua Creek Reach 3 | Waltz Creek                                     |
| Jacoby Creek              | West Branch Little Bushkill Creek               |
| Lehigh River              |                                                 |
| Little Bushkill Creek     |                                                 |
| Little Martins Creek      |                                                 |
| Martins Creek Reach 1     |                                                 |

For the April 6, 2001, countywide FIS, the Delaware River was restudied for its entire length within the county. The Lehigh River was studied from its confluence with the Delaware River in Easton to just above the confluence of Nesquehoning Creek in Carbon County. Saucon Creek was studied from its confluence with the Lehigh River in Bethlehem to the Lower Milford Township/Upper Saucon Township line in Lehigh County. This FIS also incorporated the determination of a Letter of Map Revision (LOMR). A LOMR was issued by FEMA on July 27, 1989, in the vicinity of Wilson Avenue in the Township of Bethlehem.

For this countywide revision, the Delaware River was restudied for its entire reach within the county. Nancy Run was restudied from its confluence with the Lehigh River in the Borough of Freemansburg to Farmersville Road in the Township of Bethlehem. This revision also incorporates the determination of a LOMR. A LOMR was issued by FEMA on December 22, 2009, in the vicinity of Lehigh River in the City of Bethlehem.

The areas studied by detailed methods were selected with priority given to all known flood hazard areas and areas of projected development and proposed construction.

Numerous flooding sources in the county were studied by approximate methods. Approximate analyses were used to study those areas having a low development potential or minimal flood hazards. The scope and methods of study were proposed to, and agreed upon by, FEMA, and Northampton County.

## 2.2 Community Description

Northampton County is located in eastern Pennsylvania. The county is bordered by Monroe County to the north; Warren County, New Jersey, to the east; Bucks County to the south; Lehigh County to the southwest; and Carbon County to the northwest.

The climate in Northampton County is humid continental. Summer and winter temperatures average 70.2 degrees Fahrenheit ( $^{\circ}$ F) and 28.7 $^{\circ}$ F, respectively. The annual average precipitation of the county is 43.9 inches, while recorded snowfall totals 17.8 inches (Reference 1). According to the U.S. Census Bureau figures, the population in 2010 was 297,735, and the land area was approximately 370 square miles.

## 2.3 Principal Flood Problems

Flooding in Northampton County occurs in all seasons from both extra-tropical storms (produced from the passage of either a cold front or a warm front) and tropical storms. Flood conditions may be aggravated by the rapid melting of an existing snow pack, and/or by reduction in infiltration losses due to frozen ground.

Extra-tropical storms associated with cold fronts occur mostly during the warmer months of the year. Precipitation accompanying the passage of a cold front tends to be intense and of short duration, occurring in the form of thunderstorms or snowfall. Major basin-wide floods are rarely caused by cold-front rainfall; however, the majority of floods along the smaller tributaries and in the headwater areas of the main streams are produced by cold-front storms.

Extra-tropical storms associated with warm fronts may be expected at any time during the year, but they are more prevalent during the colder months of the year. Warm-front storms, producing less intense but more protracted rainfall, have produced most of the basin-wide floods. A special type of flooding associated with a warm-front storm is produced when rain falls on a winter snow pack. The rapid spring melting of a deep snow pack combined with heavy rainfall can be the cause of significant runoff.

Several major floods have occurred in the Delaware River Basin in this century. The flood of August 1955 is the flood of record for most of the Delaware River Basin. The event of October 1903 also caused extensive flooding, particularly in the upper basin, where it is still the flood of record in some areas.

Delaware River flood records prior to the establishment of stream gages are available at Trenton, New Jersey. The flood of February 27, 1692 (reported 12 feet above the usual high-water mark) may have been as great or greater than that of August 1955. The flood of January 8, 1841, was reported at that time to be the greatest since 1692. The ice jam flood of February 8, 1857, may have had a stage at Trenton equal to or higher than the ice jam flood of March 8, 1904 (the highest known stage at Trenton).

**Flood of October 1903:** The flood of October 7-11 occurred as a result of a hurricane-associated storm which centered east of the upper Delaware River Basin. Many stage and discharge records were established as most of the basin above Trenton was severely flooded. These records remained unbroken until August 1955, when flood crests several feet higher were recorded along much of the Delaware River. Flood flows in the upper basin were exceedingly high in 1903 and flood stages reached on the East and West Branches of the Delaware River at Fishs Eddy and Hale Eddy, respectively, remain unequaled.

**Flood of March 1936:** This flood resulted from a combination of precipitation and appreciable snow melt from a storm that had two periods of precipitation, the first on the 11<sup>th</sup> and 12<sup>th</sup> and the second on the 17<sup>th</sup> to 21<sup>st</sup>. Snow cover on March 10 expressed as water content in inches, ranged over the basin from 5 to 8 inches in the head waters in New York and Pennsylvania, to zero below Trenton, New Jersey. The precipitation from these storms melted much of the snow in the basin and produced two peaks. Runoff from the second storm was greater than that from the first storm on the main stem.

**Flood of May 1942:** The storm of May 19-23, 1942, traveled generally northeastward across eastern Pennsylvania and into New York and produced heavy flows along the main stem of the Delaware River. In some areas, this flood caused extensive damage. Thirty-three persons lost their lives, thirty-five bridges were washed out, and ten small dams failed.

**Flood of August 1955:** The flood of August 1955 was the result of two hurricanes, Connie and Diane, passing over the basin within a few days. Hurricane Connie, which passed over the basin on August 12-13, encountered the extremely dry conditions that had prevailed through July and early August. Most of the precipitation from Connie was absorbed by the dry soil and resulted in relatively little runoff. Connie did, however, help saturate the basin and consequently contributed toward increased runoff from Diane which quickly followed. The high-intensity rainfall during Hurricane Diane caused rapid flooding of record-breaking proportions. Most of the drainage area above Trenton was severely flooded. Along the main stem of the Delaware River, the flooding exceeded the previous flood levels at all points above Trenton.

## 2.4 Flood Protection Measures

The USACE constructed and operates four flood-control reservoirs in the Delaware River Basin above Burlington. General Edgar Jadwin and Prompton

Reservoirs are located on tributaries in Wayne County, Pennsylvania. Francis E. Walter Dam is on the Lehigh River in Carbon and Luzerne Counties, Pennsylvania, approximately 77 river miles above the confluence with the Delaware River. Beltzville Reservoir is located on Pohopoco Creek approximately 4 miles upstream from the confluence with the Lehigh River in Carbon County, Pennsylvania. Walter and Beltzville are used for low flow augmentation and recreation in addition to flood control. The Commonwealth of Pennsylvania maintains Nockamixon State Park on Tohickon Creek for flood control, recreation, and future water supply.

In addition, several local flood protection projects have been constructed along the Lehigh River in the City of Bethlehem.

### 3.0 ENGINEERING METHODS

For the flooding sources studied in detail in the county, standard hydrologic and hydraulic study methods were used to determine the flood hazard data required for this study. Flood events of a magnitude which are expected to be equaled or exceeded once on the average during any 10-, 50-, 100-, or 500-year period (recurrence interval) have been selected as having special significance for floodplain management and for flood insurance rates. These events, commonly termed the 10-, 50-, 100-, and 500-year floods, have a 10-, 2-, 1-, and 0.2-percent chance, respectively, of being equaled or exceeded during any year. Although the recurrence interval represents the long term average period between floods of a specific magnitude, rare floods could occur at short intervals or even within the same year. The risk of experiencing a rare flood increases when periods greater than 1 year are considered. For example, the risk of having a flood which equals or exceeds the 1-percent-annual-chance flood (1 percent chance of annual exceedence) in any 50-year period is approximately 40 percent (4 in 10), and, for any 90-year period, the risk increases to approximately 60 percent (6 in 10). The analyses reported herein reflect flooding potentials based on conditions existing in the county at the time of completion of this study. Maps and flood elevations will be amended periodically to reflect future changes.

#### 3.1 Hydrologic Analyses

Hydrologic analyses were carried out to establish the peak discharge-frequency relationships for each flooding source studied in detail affecting the county.

Information on the methods used to determine peak discharge-frequency relationship for the streams studied by detailed methods is shown below

##### **Precountywide FIS**

Each flood-prone community within Northampton County, except the Boroughs of Chapman, East Bangor, Nazareth, Pen Argyl, and Roseto, the Townships of East Allen and Upper Nazareth, and the City of Bethlehem has a previously

printed FIS report. The hydrologic analyses described in those reports has been compiled and is summarized below.

For Hokendauqua Creek, the hydrologic analyses were also based on the Regional Frequency Study, which followed the standard log-Pearson Type III analyses (References 2 and 3). Since there are no gages located nearby on the creek, missing flood peaks were estimated by correlation with the nearest long-record stations, and the statistics were then recomputed.

The methodology relates the magnitude of instantaneous-peak stream discharge for selected recurrence intervals to statistically significant drainage basin characteristics. The drainage basin characteristics include channel slope, storage, annual precipitation, and the drainage area as determined from USGS topographic maps and Water Resources Bulletin No. 6 (References 4 and 5).

The flood-flow frequency analysis of Martins Creek was performed by following the procedures shown in the Regional Frequency Study (Reference 2). This study, which was prepared by the USACE, Hydrologic Engineering Center (HEC), utilized the log-Pearson Type III method as described in "A Uniform Technique for Determining Flood Flow Frequency" to analyze the peak yearly flows for all gages in the Delaware and Hudson River Basins (Reference 3). The HEC study provides log-Pearson Type III parameters for stream gaging stations and equations for translating frequency-discharge relations from the gage locations to other desired points upstream and downstream of the gage locations.

The flow analyses of streams studied by detailed methods were performed by using the adopted log-Pearson parameters from the referenced HEC study. The parameters for Gage 01446600 located near East Bangor were used to analyze the Martins Creek flow.

A report entitled "Basin-Wide Program for Flood Plain Delineation" was also used in the analyses of the study flows (Reference 6). The report describes a method to determine flood flows for uncontrolled watersheds and for watersheds in which dams, ponds, swamps, etc., do not control more than 27 percent of the total watershed. The report was used only for comparison of flood flows determined by the method described in the preceding paragraphs.

Flood-frequency discharge values for Monocacy Creek were determined utilizing regional regression equations developed in USGS Water Resources Investigations 82-21 (Reference 7).

For the Monocacy Creek, flood flow frequency data were based on a statistical analysis of stage-discharge records covering a 168-year period at five gaging stations operated by the USGS (Reference 8). The following is a list of the gaging stations used in computing the hydrologic analyses.

| <u>Gaging Station</u> | <u>Location</u>                                                | <u>Period of Record</u> |
|-----------------------|----------------------------------------------------------------|-------------------------|
| #10447800             | Lehigh River below Francis E. Walter Lake near White Haven, PA | 1957-1976               |
| #457500               | Lehigh River at Tannery, PA                                    | 1943-1976<br>1940-1976  |
| #091453000            | Lehigh River at Bethlehem, PA                                  | 1902-1905<br>1909-1976  |
| #01454700             | Lehigh River at Glendon, PA                                    | 1966-1976               |

This analysis was based on the Regional Frequency Study (Reference 2), which furnished information on the regulating effects of the Francis E. Walter and the Beltzville Dams on the Lehigh River flow since February 1961 and February 1971, respectively. The study was modified with updated regional readings and flood data. This method of analysis follows the standard log-Pearson Type III method as outlined by the Water Resources Council (References 3 and 4).

For the area of Nancy Run studied by detailed methods, a regional flood-frequency method based on a statistical analysis of USGS stream flow gages in Pennsylvania was utilized to compute the 10-, 50-, 100-, and 500-year flood-frequency values (Reference 8).

The analysis of Monocacy Creek was based on the regional frequency method developed by the USACE (Reference 2). This method was modified by the engineering firm of Justin and Courtney, Inc., to apply specifically to the Lehigh Valley (Reference 9). Flood discharge values for the 10-, 50-, 100-, and 500-year floods were determined by this method. This method was selected for Monocacy Creek for the purpose of continuity with the FIS for the City of Bethlehem (Reference 10).

Flood-frequency discharge values for Bushkill Creek were determined utilizing regional regression equations developed in USGS Water-Resources Investigations 82-21 (Reference 7).

Modification of the frequency distributions to allow for regulation effects were made by the USACE, Philadelphia District on the basis of its flood routing analysis of the Delaware River (Reference 11).

A similar hydrologic analysis of the Lehigh River was used to obtain values of the 10-, 50-, 100-, and 500-year regulated peak discharges for the Lehigh River (Reference 12). The principal gage on this stream is at Bethlehem, Pennsylvania, 6 miles upstream from the corporate limits. This gage has been in operation since 1902, with exception of the 1906-1909 period (Reference 13).

Peak discharge values for the 10-, 50-, and 1-percent-annual-chance recurrence intervals for Bushkill Creek were determined from the appropriate regional equations in a USGS report, titled “Floods in Pennsylvania, A Manual for Estimation of Their Magnitude and Frequency” (Reference 14). The 500-year value was obtained from the frequency-discharge drainage area data in the Palmer Township FIS (Reference 12).

The 1-percent-annual-chance discharge for the portion of Monocacy Creek that flows through the northeast corner of the Township of Hanover was obtained from a regional flood frequency method developed at Pennsylvania State University (Reference 15).

The hydrologic analysis of Silver Creek was developed using both the USACE HEC-1 computer program and the Regional Frequency Study (References 16 and 2). Both methods were reviewed and compared; however, values computed using the HEC-1 computer program were selected for use.

Flood-frequency analyses of Martins Creek and Little Martins Creek were performed following procedures shown in the Regional Frequency Study (Reference 2). This study utilized the log-Pearson Type III method, as described in Water Resources Bulletin 15, to analyze the peak annual flows at the gage (No. 01446600) located near East Bangor (Reference 3). The USACE study provided log-Pearson Type III parameters for the gaging station and equations for translating the frequency-discharge relationships from the gage location to other desired points upstream and downstream of the gage location. Discharges for the 500-year floods on Martins Creek and Little Martins Creek were developed using additional information from tables of log-Pearson Type III distribution percentage points and K tables developed by the U.S. Department of Agriculture, Soil Conservation Service (SCS) (References 3 and 17).

Flood-frequency discharge values for Monocacy Creek, East Branch Monocacy Creek, and Unnamed Tributary to East Branch Monocacy Creek were developed from Bulletin 17B and the peak discharge records for Monocacy Creek at Bethlehem, gage No. 01542500 (Reference 18). Flood-frequency discharge values for Shoeneck Creek were taken from the FIS for the Township of Palmer (Reference 12). In that study, regionalized frequency curves were taken from the Philadelphia District of the USACE Flood Plain Information Report for Little Bushkill Creek and Shoeneck Creek.

For the detailed study of Hokendauqua Creek, the hydrologic analysis was a modification of the SCS procedure designated in this study as “Journal of the Hydraulics Division,” which relates basin characteristics to streamflow characteristics (Reference 19).

Rainfall data were calculated using the Pennsylvania State University’s “Design Procedures for Rainfall-Duration-Frequency in Pennsylvania” (Reference 20). These data were combined with basin characteristics such as drainage area, stream slope, vegetation, soil cover, and land use characteristics to estimate the resulting

discharge values considering a time lapse to the peak discharge calculated by empirical equations.

For the areas of Little Bushkill Creek and Waltz Creek studied by detailed methods, a regional flood-frequency method based on a statistical analysis of Pennsylvania stream flow gages by the USGS was utilized to compute 10-, 50-, and 1-percent-annual-chance flood-frequency values (Reference 21). Discharge values for the 500-year flood were extrapolated from flood-frequency curves developed from these values. The analysis of the shallow flooding area northeast of the Borough of Pen Argyl involved the development of only a 1-percent-annual-chance flood discharge value. This discharge figure was determined by weighing the values determined by the Rational Method and a method used by the SCS (Reference 22). Both methods involve the abstraction of streamflow discharge values from rainfall data based on watershed characteristics such as drainage area, stream slope, land use, and soil cover.

For the detailed study of Jacoby Creek, the hydrologic analyses were performed following the methodology presented in Water Resources Bulletin No. 13 on floods in Pennsylvania, which relates drainage basin characteristics to streamflow characteristics (Reference 21). The resulting discharges compared favorably to discharges computed using the methodology of the Regional Frequency Study (Reference 2).

The source of discharge data for the detailed analysis of Bushkill Creek is information developed for the Flood Plain Information Report for Bushkill Creek (Reference 23). The method utilized by the USACE in establishing the 10- and 50-year flood discharge values is a regional method outlined in USGS Water Supply Paper 1672 (Reference 24). The 1-percent-annual-chance flood discharge was extrapolated from these values, and the 500-year flood was assumed to be equivalent to the standard project flood (Reference 25).

More reliable flood frequency discharge values were determined for Bushkill Creek in the Borough of Tatamy by a flood frequency method developed specifically for Pennsylvania (Reference 21). Five- and ninety-five percent confidence limits were established for the resulting curve according to the method outlined in the publication, Hydrologic Engineering Methods for Water Resources Development, Volume 3, Hydrologic Frequency Analysis (Reference 26). The previously defined USACE frequency discharge figures all fell within this confidence band with the exception of the 500-year flood value, which was found to be above the five-percent confidence limit curve.

Discharge data for the approximate study area of Little Bushkill Creek can be found in the Little Bushkill Creek Flood Plain Information Report (Reference 27).

For the detailed study of West Branch Little Bushkill Creek, the hydrologic analyses were performed following the methodology presented in Water Resources Bulletin No. 13 on floods in Pennsylvania (Reference 21), which relates drainage basin characteristics to streamflow characteristics. The resulting discharges compared favorably to the discharges computed using both the

Regional Frequency Study (Reference 2) and the published streamflow discharges approximated for West Branch Little Bushkill Creek (Reference 27).

### April 6, 2001 Countywide FIS

The hydrologic analysis of the Lehigh River was derived directly from the “Modification of the Francis E. Walter Dam and Reservoir, General Design Memorandum, Appendix J – Hydrology and Hydraulics” (Reference 28). Data from the same analysis is also presented in “F. E. Walter Reservoir, Lehigh River, PA, Water Control Manual” (Reference 29). The analysis of Saucon Creek consisted solely of the updated regional study since no gages exist on the creek.

The hydrologic analysis of the Delaware River was directly derived from “Delaware River Basin Study Survey Report, Technical Appendices” (Reference 30).

### This Revision

The peak discharge computation procedure for using Pennsylvania Regression Equations is presented in the publication “Regression Equations for Estimating Flood Flows at Selected Recurrence Intervals for Ungaged Streams in Pennsylvania” (Scientific Investigation Report [SIR] no.-2008-5102) (Reference 31). Based on physiography, elevation, and geologic characteristics, the publication divided the State of Pennsylvania into four hydrologic regions. Northampton County falls under hydrologic Region 1. The general form of the regression equation is shown in Equation 2.1 below.

$$\hat{Q}_T = 10^4 (DA)^b (El)^c (1 + 0.01C)^d (1 + 0.01U)^e (1 + 0.1Sto)^f \quad \dots \quad (\text{Equation 2.1})$$

Where

$\hat{Q}_T$  = the T-year predicted flood flow, in cubic feet per second;  
 $A$  = the intercept (estimated by GLS);  
 $DA$  = drainage area, in square miles;  
 $El$  = mean elevation, in feet;  
 $C$  = basin underlain by carbonate bedrock, in percent;  
 $U$  = urban area in the basin, in percent;  
 $Sto$  = storage in the basin, in percent; and  
 $b, c, d, e, \text{ and } f$  = basin characteristic coefficients of regression estimated by GLS.

The SIR 2008-5102 states that the regression equations mentioned in Equation 2.1 can be applied to watersheds with drainage areas ranging from 1 square mile to 2000 square miles. The SIR recommends application of regression equations to only those watersheds that fall within the range of variables that were used for developing regression equations. The applicable range of urban area for Region1 equations is between 0-20 percent.

For Nancy Creek, the percent urban area is more than 20. Hence, a correction to the flows obtained by Pennsylvania Regression equations was applied using Nationwide 7-Parameter Urban Regression equations listed below. The urban equations are valid for urbanized areas that do not contain peak controlling structures and should not be used if any of the seven variables are larger or smaller than those used in the original regression study.

$$\begin{aligned}
 UQ_2 &= 2.35 A^{.41} SL^{.17} (RI_2+3)^{2.04} (ST+8)^{-0.65} (13-BDF)^{-0.32} IA^{.15} RQ_2^{.47} \\
 UQ_5 &= 2.7 A^{.35} SL^{.16} (RI_2+3)^{1.86} (ST+8)^{-0.59} (13-BDF)^{-0.31} IA^{.11} RQ_5^{.54} \\
 UQ_{10} &= 2.99 A^{.32} SL^{.15} (RI_2+3)^{1.75} (ST+8)^{-0.57} (13-BDF)^{-0.30} IA^{.09} RQ_{10}^{.58} \\
 UQ_{25} &= 2.78 A^{.31} SL^{.15} (RI_2+3)^{1.76} (ST+8)^{-0.55} (13-BDF)^{-0.29} IA^{.07} RQ_{25}^{.60} \\
 UQ_{50} &= 2.67 A^{.29} SL^{.15} (RI_2+3)^{1.74} (ST+8)^{-0.53} (13-BDF)^{-0.28} IA^{.06} RQ_{50}^{.62} \\
 UQ_{100} &= 2.50 A^{.29} SL^{.15} (RI_2+3)^{1.76} (ST+8)^{-0.52} (13-BDF)^{-0.28} IA^{.06} RQ_{100}^{.63} \\
 UQ_{500} &= 2.27 A^{.29} SL^{.16} (RI_2+3)^{1.86} (ST+8)^{-0.54} (13-BDF)^{-0.27} IA^{.05} RQ_{500}^{.63}
 \end{aligned}$$

|        |          |                                                                                                                                                                  |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Where: | $UQ_T$ = | Urban T-year Peak Discharge (cubic feet/second)                                                                                                                  |
|        | $A$ =    | Drainage Area (square miles)                                                                                                                                     |
|        | $SL$ =   | Main Channel Slope (feet/mile)                                                                                                                                   |
|        | $RI_2$ = | Rainfall for the 2-hour, 2-year recurrence interval (inches)                                                                                                     |
|        | $ST$ =   | Basin Storage (percent)                                                                                                                                          |
|        | $BDF$ =  | Basin Development Factor                                                                                                                                         |
|        | $IA$ =   | Impervious Surfaces (percent)                                                                                                                                    |
|        | $RQ_T$ = | Peak Discharges for an equivalent rural drainage basin in the same hydrologic area as the urban basin for a recurrence interval of $T$ years (cubic feet/second) |

For streams studied by approximate methods, where ever the % urban was more than 20, the 3-parameter Urban Regression equations listed below were used to correct the discharges obtained by Pennsylvania Regression Equations.

$$\begin{aligned}
 UQ_2 &= 13.2 A^{.21} (13-BDF)^{-0.43} RQ_2^{.73} \\
 UQ_5 &= 10.6 A^{.17} (13-BDF)^{-0.39} RQ_5^{.78} \\
 UQ_{10} &= 9.51 A^{.16} (13-BDF)^{-0.36} RQ_{10}^{.79} \\
 UQ_{25} &= 8.68 A^{.15} (13-BDF)^{-0.34} RQ_{25}^{.80} \\
 UQ_{50} &= 8.04 A^{.15} (13-BDF)^{-0.32} RQ_{50}^{.81} \\
 UQ_{100} &= 7.70 A^{.15} (13-BDF)^{-0.32} RQ_{100}^{.82}
 \end{aligned}$$

For the Delaware River, the USGS developed flood magnitude and frequency values, including 10-, 2-, 1-, and 0.2-percent annual chance floods, for eight

active USGS streamflow gaging stations on the main stem of the Delaware River. The eight active gages include stations from Trenton, NJ to Callicoon, NY (Reference 32). This data was developed in collaboration with USACE Philadelphia District, New Jersey Department of Environmental Protection (NJDEP), FEMA Regions II and III, and the Delaware Basin Commission (DRBC). The hydrologic analysis was performed in accordance with guidelines published by the Interagency Advisory Committee on Water Data in its Bulletin 17B. This involved the analysis of peak-flow gage data records utilizing the PEAKFQ program. Five additional flow locations were established between USGS gaging stations to provide better flow distribution along the main stem. These flow locations are placed in the vicinity of tributaries with significant drainage area contribution. The discharges, including 10-, 2-, 1-, and 0.2-percent annual chance floods, were estimated per linear-interpolation of a discharge-frequency relationship as a function of drainage area for the eight active USGS gaging stations.

A summary of the drainage area-peak discharge relationships for all the streams studied by detailed methods is shown in Table 3, "Summary of Discharges."

TABLE 3 - SUMMARY OF DISCHARGES

| FLOODING SOURCE<br>AND LOCATION                        | DRAINAGE AREA<br>(sq. miles) | PEAK DISCHARGES (cfs)          |                               |                               |                                 |
|--------------------------------------------------------|------------------------------|--------------------------------|-------------------------------|-------------------------------|---------------------------------|
|                                                        |                              | 10-PERCENT<br>ANNUAL<br>CHANCE | 2-PERCENT<br>ANNUAL<br>CHANCE | 1-PERCENT<br>ANNUAL<br>CHANCE | 0.2-PERCENT<br>ANNUAL<br>CHANCE |
| <b>BLACK RIVER</b>                                     |                              |                                |                               |                               |                                 |
| At confluence with<br>Saucon Creek                     | 4.5                          | 950                            | 2,100                         | 2,800                         | 5,000                           |
| At limit of detailed study                             | 0.7                          | 270                            | 540                           | 700                           | 1,150                           |
| <b>BUSHKILL CREEK REACH 1</b>                          |                              |                                |                               |                               |                                 |
| At confluence with<br>Delaware River                   | 80.0                         | 5,070                          | 8,100                         | 9,600                         | 23,000                          |
| At Township of Forks<br>downstream corporate limits    | 75.0                         | 5,000                          | 8,300                         | 9,700                         | 23,000                          |
| At Borough of Tatamy<br>downstream corporate<br>limits | 51.0                         | 3,690                          | 6,150                         | 7,200                         | 17,000                          |
| At Township of Forks<br>upstream corporate limits      | 48.8                         | 3,690                          | 6,150                         | 7,200                         | 17,000                          |
| At confluence of Little<br>Bushkill Creek              | 29.8                         | 2,620                          | 4,375                         | 5,100                         | 11,250                          |
| <b>BUSHKILL CREEK REACH 3</b>                          |                              |                                |                               |                               |                                 |
| At Aluta Mill Road bridge                              | 13.2                         | *                              | *                             | 2,870                         | *                               |
| Upstream of Bushkill<br>Center Road                    | 10.4                         | *                              | *                             | 2,460                         | *                               |
| At State Route 512                                     | 7.73                         | *                              | *                             | 1,980                         | *                               |

\*Data not available

**TABLE 3 - SUMMARY OF DISCHARGES** - continued

| FLOODING SOURCE<br>AND LOCATION                                              | DRAINAGE AREA<br>(sq. miles) | PEAK DISCHARGES (cfs)          |                               |                               |                                 |
|------------------------------------------------------------------------------|------------------------------|--------------------------------|-------------------------------|-------------------------------|---------------------------------|
|                                                                              |                              | 10-PERCENT<br>ANNUAL<br>CHANCE | 2-PERCENT<br>ANNUAL<br>CHANCE | 1-PERCENT<br>ANNUAL<br>CHANCE | 0.2-PERCENT<br>ANNUAL<br>CHANCE |
| CATASAUQUA CREEK                                                             |                              |                                |                               |                               |                                 |
| At Borough of North<br>Catasauqua southern<br>corporate limits               | 8.89                         | 1,300                          | 2,900                         | 4,000                         | 7,800                           |
| DELAWARE RIVER                                                               |                              |                                |                               |                               |                                 |
| At USGS Gage 01446500 at<br>Belvidere, New Jersey                            | 4,535                        | 145,000                        | 215,000                       | 248,000                       | 334,000                         |
| Upstream of confluence<br>of Lehigh River                                    | 4,636                        | 146,239                        | 216,465                       | 249,465                       | 335,352                         |
| Downstream of confluence<br>of Lehigh River                                  | 6,084                        | 164,006                        | 237,462                       | 270,462                       | 354,734                         |
| At USGS Gage 01457500 at<br>Riegelsville, New Jersey                         | 6,328                        | 167,000                        | 241,000                       | 274,000                       | 358,000                         |
| Downstream of confluence<br>of Tohickon Creek (NJ)                           | 6,588                        | 168,150                        | 243,301                       | 277,451                       | 366,053                         |
| At USGS Gage 01463500 at<br>Trenton, New Jersey                              | 6,780                        | 169,000                        | 245,000                       | 280,000                       | 372,000                         |
| EAST BRANCH<br>MONOCACY CREEK                                                |                              |                                |                               |                               |                                 |
| At its confluence with<br>Monocacy Creek                                     | 15.7                         | *                              | *                             | 2,800                         | *                               |
| Above confluence of<br>Unnamed Tributary to<br>East Branch Monocacy<br>Creek | 7.1                          | *                              | *                             | 1,830                         | *                               |
| At Township of Lower<br>Nazareth upstream<br>corporate limits                | 6.8                          | *                              | *                             | 1,770                         | *                               |
| HOKENDAUQUA CREEK<br>REACH 1                                                 |                              |                                |                               |                               |                                 |
| At the confluence with<br>the Lehigh River                                   | 41.1                         | 3,550                          | 7,070                         | 9,150                         | 15,800                          |

\*Data not available

**TABLE 3 - SUMMARY OF DISCHARGES** - continued

| FLOODING SOURCE<br>AND LOCATION                                                                                      | DRAINAGE AREA<br>(sq. miles) | PEAK DISCHARGES (cfs)          |                               |                               |                                 |  |
|----------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|-------------------------------|-------------------------------|---------------------------------|--|
|                                                                                                                      |                              | 10-PERCENT<br>ANNUAL<br>CHANCE | 2-PERCENT<br>ANNUAL<br>CHANCE | 1-PERCENT<br>ANNUAL<br>CHANCE | 0.2-PERCENT<br>ANNUAL<br>CHANCE |  |
| <b>HOKENDAUQUA CREEK<br/>REACH 2</b>                                                                                 |                              |                                |                               |                               |                                 |  |
| At a point approximately<br>19,750 feet above the<br>Township of Allen-Borough<br>of Northampton corporate<br>limits |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 38.1                         | 3,350                          | 6,700                         | 8,700                         | 15,000                          |  |
| At the confluence of<br>Indian Creek                                                                                 |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 21.4                         | 2,600                          | 4,600                         | 5,650                         | 11,000                          |  |
| <b>HOKENDAUQUA CREEK<br/>REACH 3</b>                                                                                 |                              |                                |                               |                               |                                 |  |
| State Route 248                                                                                                      |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 14.30                        | 2,500                          | 3,800                         | 4,300                         | 5,900                           |  |
| West Walker Road                                                                                                     |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 12.10                        | 2,040                          | 3,110                         | 3,520                         | 4,820                           |  |
| <b>JACOBY CREEK</b>                                                                                                  |                              |                                |                               |                               |                                 |  |
| At the confluence with<br>the Delaware River                                                                         |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 6.3                          | 870                            | 1,550                         | 1,900                         | 3,030                           |  |
| <b>LEHIGH RIVER</b>                                                                                                  |                              |                                |                               |                               |                                 |  |
| At Glendon tide gage                                                                                                 |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 1,359                        | 40                             | 60                            | 69                            | 98                              |  |
| At Bethlehem tide gage                                                                                               |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 1,279                        | 39                             | 59                            | 69                            | 98                              |  |
| At Allentown tide gage                                                                                               |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 1,033                        | 35                             | 55                            | 66                            | 98                              |  |
| At Walnutport tide gage                                                                                              |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 889                          | 32                             | 53                            | 64                            | 98                              |  |
| At Lehighton tide gage                                                                                               |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 591                          | 26                             | 42                            | 51                            | 78                              |  |
| At Tannery tide gage                                                                                                 |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 322                          | 9                              | 9                             | 9                             | 14                              |  |
| <b>LITTLE BUSHKILL CREEK</b>                                                                                         |                              |                                |                               |                               |                                 |  |
| Private Road No. 1                                                                                                   |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 16.2                         | 1,500                          | 2,520                         | 3,020                         | 4,400                           |  |
| Township Road No. 619                                                                                                |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 15.6                         | 1,460                          | 2,440                         | 2,930                         | 4,300                           |  |
| Township Road No. 623                                                                                                |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 13.5                         | 1,300                          | 2,190                         | 2,630                         | 3,800                           |  |
| State Route 191                                                                                                      |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 12.6                         | 1,230                          | 2,080                         | 2,500                         | 3,600                           |  |
| <b>MARTINS CREEK REACH 2</b>                                                                                         |                              |                                |                               |                               |                                 |  |
| At State Route 165<br>bridge, 1.0 mile south<br>of Flicksville                                                       |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 21.8                         | *                              | *                             | 5,970                         | *                               |  |
| At Flicksville<br>corporate limits                                                                                   |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 20.9                         | *                              | *                             | 5,770                         | *                               |  |
| At downstream Bangor<br>corporate limits                                                                             |                              |                                |                               |                               |                                 |  |
|                                                                                                                      | 19.0                         | *                              | *                             | 5,350                         | *                               |  |

\*Data not available

**TABLE 3 - SUMMARY OF DISCHARGES** - continued

| FLOODING SOURCE<br>AND LOCATION                                   | DRAINAGE AREA<br>(sq. miles) | PEAK DISCHARGES (cfs)          |                               |                               |                                 |  |
|-------------------------------------------------------------------|------------------------------|--------------------------------|-------------------------------|-------------------------------|---------------------------------|--|
|                                                                   |                              | 10-PERCENT<br>ANNUAL<br>CHANCE | 2-PERCENT<br>ANNUAL<br>CHANCE | 1-PERCENT<br>ANNUAL<br>CHANCE | 0.2-PERCENT<br>ANNUAL<br>CHANCE |  |
| <b>MARTINS CREEK REACH 2</b>                                      |                              |                                |                               |                               |                                 |  |
| (continued)                                                       |                              |                                |                               |                               |                                 |  |
| At upstream Bangor corporate limits                               | 13.0                         | *                              | *                             | 4,050                         | *                               |  |
| At the Township of Upper Mount Bethel downstream corporate limits | 10.4                         | 1,470                          | 3,150                         | 4,210                         | 7,850                           |  |
| <b>MONOCACY CREEK REACH 1</b>                                     |                              |                                |                               |                               |                                 |  |
| At West Lehigh Street                                             | 50.0                         | 1,350                          | 2,800                         | 3,750                         | 7,000                           |  |
| At southern corporate limits                                      | 37.1                         | 1,150                          | 2,400                         | 3,200                         | 5,900                           |  |
| At State Route 22                                                 | 35.7                         | 1,050                          | 2,170                         | 2,920                         | 5,570                           |  |
| <b>MONOCACY CREEK REACH 2</b>                                     |                              |                                |                               |                               |                                 |  |
| At Borough of Bath downstream corporate limits                    | 7.65                         | *                              | *                             | 1,900                         | *                               |  |
| At Borough of Bath upstream corporate limits                      | 3.82                         | *                              | *                             | 1,150                         | *                               |  |
| <b>NANCY RUN</b>                                                  |                              |                                |                               |                               |                                 |  |
| At confluence with Lehigh River                                   | 6.14                         | 3,605                          | 4,019                         | 4,291                         | 4,547                           |  |
| Approx. 0.4 miles upstream of confluence with Lehigh River        | 5.84                         | 3,486                          | 3,885                         | 4,146                         | 4,394                           |  |
| At downstream corporate limits of Township of Bethlehem           | 5.49                         | 3,273                          | 3,647                         | 3,890                         | 4,119                           |  |
| Downstream of Walnut Street                                       | 4.79                         | 2,780                          | 3,113                         | 3,316                         | 3,520                           |  |
| Downstream of Willow Park Road                                    | 2.92                         | 1,825                          | 2,058                         | 2,183                         | 2,324                           |  |
| Approx. 0.22 miles upstream of 5 <sup>th</sup> Street             | 2.48                         | 1,613                          | 1,827                         | 1,935                         | 2,066                           |  |
| Upstream of confluence of Tributary                               | 1.40                         | 1,022                          | 1,153                         | 1,216                         | 1,297                           |  |
| Downstream of Farmersville Road                                   | 1.28                         | 953                            | 1,076                         | 1,134                         | 1,210                           |  |
| <b>SAUCON CREEK</b>                                               |                              |                                |                               |                               |                                 |  |
| At confluence with Lehigh River                                   | 57.9                         | 4,620                          | 8,620                         | 10,910                        | 17,990                          |  |
| At cross section A                                                | 56.5                         | 4,540                          | 8,480                         | 10,740                        | 17,730                          |  |
| Downstream of East Branch Saucon Creek                            | 56.0                         | 4,510                          | 8,430                         | 10,680                        | 17,640                          |  |

\*Data not available

**TABLE 3 - SUMMARY OF DISCHARGES** - continued

| FLOODING SOURCE<br>AND LOCATION                        | DRAINAGE AREA<br>(sq. miles) | PEAK DISCHARGES (cfs)          |                               |                               |                                 |
|--------------------------------------------------------|------------------------------|--------------------------------|-------------------------------|-------------------------------|---------------------------------|
|                                                        |                              | 10-PERCENT<br>ANNUAL<br>CHANCE | 2-PERCENT<br>ANNUAL<br>CHANCE | 1-PERCENT<br>ANNUAL<br>CHANCE | 0.2-PERCENT<br>ANNUAL<br>CHANCE |
| <b>SAUCON CREEK (continued)</b>                        |                              |                                |                               |                               |                                 |
| Upstream of East Branch                                |                              |                                |                               |                               |                                 |
| Saucon Creek                                           | 45.7                         | 3,890                          | 7,370                         | 9,370                         | 15,630                          |
| Downstream of Silver Creek (Friendensville Road)       | 38.0                         | 3,400                          | 6,520                         | 8,320                         | 14,010                          |
| Upstream of Silver Creek (Friendensville Road)         | 35.1                         | 3,210                          | 6,180                         | 7,910                         | 13,370                          |
| Downstream of South Branch Saucon Creek                | 26.6                         | 2,630                          | 5,140                         | 6,620                         | 11,340                          |
| Upstream of South Branch Saucon Creek                  | 16.1                         | 1,820                          | 3,680                         | 4,800                         | 8,420                           |
| Lower Milford Township boundary                        | 3.9                          | 640                            | 1,420                         | 1,920                         | 3,600                           |
| <b>SHEET FLOW AREA</b>                                 |                              |                                |                               |                               |                                 |
| Northeast of the Borough of Pen Argyl                  | 0.63                         | *                              | *                             | 897                           | *                               |
| <b>SHOENECK CREEK</b>                                  |                              |                                |                               |                               |                                 |
| At its confluence with Bushkill Creek                  | 6.7                          | *                              | *                             | 1,445                         | *                               |
| <b>SILVER CREEK</b>                                    |                              |                                |                               |                               |                                 |
| At Borough of Hellertown downstream corporate limits   | 2.7                          | 600                            | 1,300                         | 1,700                         | 2,900                           |
| <b>UNNAMED TRIBUTARY TO EAST BRANCH MONOCACY CREEK</b> |                              |                                |                               |                               |                                 |
| At its confluence with East Branch Monocacy Creek      | 6.3                          | *                              | *                             | 1,680                         | *                               |
| <b>UNNAMED TRIBUTARY TO MARTINS CREEK REACH 2</b>      |                              |                                |                               |                               |                                 |
| Upstream of Bangor corporate limits                    | 0.85                         | *                              | *                             | 560                           | *                               |

\*Data not available

**TABLE 3 - SUMMARY OF DISCHARGES** - continued

| FLOODING SOURCE<br>AND LOCATION                                         | DRAINAGE AREA<br>(sq. miles) | PEAK DISCHARGES (cfs)          |                               |                               |                                 |
|-------------------------------------------------------------------------|------------------------------|--------------------------------|-------------------------------|-------------------------------|---------------------------------|
|                                                                         |                              | 10-PERCENT<br>ANNUAL<br>CHANCE | 2-PERCENT<br>ANNUAL<br>CHANCE | 1-PERCENT<br>ANNUAL<br>CHANCE | 0.2-PERCENT<br>ANNUAL<br>CHANCE |
| <b>UNNAMED TRIBUTARY TO<br/>WALTZ CREEK</b>                             |                              |                                |                               |                               |                                 |
| At Village of<br>Ackermanville                                          | 0.79                         | *                              | *                             | 520                           | *                               |
| <b>WALTZ CREEK</b>                                                      |                              |                                |                               |                               |                                 |
| Above confluence of<br>unnamed tributary at<br>Village of Ackermanville | 7.6                          | *                              | *                             | 2,700                         | *                               |
| 300 feet downstream of<br>Legislative Route 48036                       | 3.2                          | 419                            | 740                           | 902                           | 1,370                           |
| At Township of Plainfield<br>upstream corporate limits                  | 2.4                          | 343                            | 610                           | 745                           | 1,130                           |
| <b>WEST BRANCH LITTLE<br/>BUSHKILL CREEK</b>                            |                              |                                |                               |                               |                                 |
| Upstream of State<br>Route 512                                          | 2.5                          | 350                            | 620                           | 760                           | 1,200                           |

\*Data not available

### 3.2 Hydraulic Analyses

Analyses of the hydraulic characteristics of flooding from the source studied were carried out to provide estimates of the elevations of floods of the selected recurrence intervals. Users should be aware that flood elevations shown on the FIRM represent rounded whole-foot elevations and may not exactly reflect the elevations shown on the Flood Profiles or in the Floodway Data tables in the FIS report. For construction and/or floodplain management purposes, users are encouraged to use the flood elevation data presented in this FIS in conjunction with the data shown on the FIRM.

Locations of selected cross sections used in the hydraulic analyses are shown on the Flood Profiles (Exhibit 1). For stream segments for which a floodway was computed (Section 4.2), selected cross-section locations are also shown on the FIRM (Exhibit 2).

Flood profiles were drawn showing computed water-surface elevations for floods of the selected recurrence intervals.

The hydraulic analyses for this study were based on unobstructed flow. The flood elevations shown on the profiles are thus considered valid only if hydraulic structures remain unobstructed, operate properly, and do not fail.

### **Precountywide FIS**

Each flood-prone community within Northampton County, except the Boroughs of Chapman, East Bangor, Nazareth, Pen Argyl, and Roseto, the Townships of East Allen and Upper Nazareth, and the City of Bethlehem, has a previously printed FIS report. The hydraulic analyses described in those reports have been compiled and are summarized below.

Cross sections for the backwater analyses of streams studied in detail were obtained from aerial photographs with a scale of 1"=1,000' taken in 1974 and 1978, or obtained by field measurement (References 33 and 34). For certain unnamed tributaries, Black River, and East Branch, cross sections were determined from USGS 7.5-Minute Series Quadrangle Maps (Reference 35). All bridges and culverts were surveyed to obtain elevation data and structural geometry in order to compute significant backwater effects of these structures. Cross sections were located above and below bridges, at control locations along the stream lengths, and at significant changes in ground relief, land use, or land cover. All structural data for Little Bushkill Creek in the Township of Plainfield were obtained from the USACE (References 36 and 37).

Water-surface elevations of floods of the selected recurrence intervals were computed using the USACE HEC-2 step-backwater computer program, or using normal depth calculations for the 1-percent-annual-chance recurrence interval, which was estimated from the regional relationship between drainage area and flood depth as prepared by the USACE (References 38 and 39). That relationship was developed by means of regional regression analyses of basin areas and 1-percent-annual-chance within-channel depths observed at stream gages. Depths were adjusted on the basis of hydraulic calculations to account for increased depth due to backwater from hydraulic structures such as bridges and culverts (References 40 and 41). Water-surface elevations of the selected recurrence intervals for portions of Bushkill, Waltz, and Martins Creeks were computed by modeling channel and bridge hydraulics with the WSPRO step-backwater computer program (References 42 and 43). The water-surface elevations for these recurrence intervals for some streams were developed using the USGS E341 step-backwater computer program (Reference 44). Manual computations were made to determine water-surface elevations at dams on Bushkill Creek.

For the portion of Martins Creek in the Borough of Bangor, the HEC-2 model was adjusted until the water-surface profiles matched the high water marks observed by residents during the August 1967 flood. Contraction and expansion coefficients of 0.1 and 0.3 were used for normal channel conditions, and 0.3 and 0.5, respectively, were used at the approaches to structures where cross sectional changes were more abrupt. Starting water-surface elevations for the selected discharges were developed by performing hydraulic cross-section analyses to

match high water marks. All elevations used in the hydraulic analyses were established by the U.S. Coast & Geodetic Survey in 1932, with supplementary adjustments in 1943 and 1967, measured from mean sea level.

Starting water-surface elevations for Hokendauqua Creek, Little Bushkill Creek, Jacoby Creek, Martins Creek, and Nancy Run were calculated using the slope/area method. Starting water-surface elevations for portions of Bushkill Creek were determined with the USACE HEC-2 step-backwater computer program at the confluence with the Delaware River by initially assuming that the peak fluvial discharge, for each return period, would occur coincident with a bankfull stage on the Delaware River. The backwater effect from the Delaware River was determined by assuming that a 1-percent-annual-chance stage would occur simultaneously on the Delaware River with a 10-year flood on Bushkill Creek. Both sets of profiles were plotted and the condition that is potentially more dangerous was taken as the water-surface elevation at any particular location (Reference 45). Starting water-surface elevations for other portions of Bushkill Creek were calculated based on normal-depth determinations. Starting water-surface elevations for Waltz Creek were calculated using the critical depth method.

Starting water-surface elevations for Monocacy Creek in the City of Bethlehem were based on calculated flood elevations for the Lehigh River at the mouth of the Monocacy Creek. Starting water-surface elevations for Black River and Silver Creek, tributaries to Saucon Creek, were obtained from backwater computations of Saucon Creek; starting water-surface elevations for Catasauqua Creek were taken from backwater computations of the Lehigh River.

For most streams studied by approximate methods, the 1-percent-annual-chance flood elevations were determined by field inspection of the area, engineering judgement, and examination of available topographic mapping. The effects of bridges, culverts, and other structures on the flood elevations were considered. Approximate flood boundaries were then interpolated between each location. The 1-percent-annual-chance flood elevation of that portion of Monocacy Creek studied by approximate methods was defined at selected cross sections using Manning's equation. For the approximate studies of Little Bushkill Creek upstream of Route 191 and the West Branch of Little Bushkill Creek, the 1-percent-annual-chance flood elevations were obtained from the USACE Flood Plain Information Report for Little Bushkill Creek and Shoeneck Creek (Reference 26).

The 1-percent-annual-chance flood elevations of Tributary D of Monocacy Creek, Tributary C of Nancy Run, Tributaries A and B of the Lehigh River, Tributary No. 1 to Little Bushkill Creek, Mud Run, and Tributary No. 1 to Mud Run were obtained by the Stage Index Slope Method (Reference 46). This is basically an empirical relationship used to extrapolate the stages of a flood with a return period greater than 25 years. In order to use this method, it was necessary to estimate the 10- and 25-year flood stages. This was accomplished by utilizing a flood-depth frequency method for New Jersey (Reference 47). The selection of

the New Jersey method was made because no similar technique was available for Pennsylvania. The method was considered to be valid since the study region and the non-coastal region of New Jersey have similar precipitation and basin characteristics. In the City of Bethlehem, 1-percent-annual-chance flood elevations of the unnamed tributaries, the Black River, and East Branch were approximated using the Nordep computer program, which calculated water depth and water-surface elevations using data obtained from USGS Quadrangle Sheets (References 35 and 48).

### **April 6, 2001 Countywide FIS**

Information on the methods used to determine water-surface elevation data for the Delaware River, the Lehigh River, and Saucon Creek restudied as part of this countywide study is shown below.

Cross sections for the Delaware River were obtained from a Digital Terrain Model (DTM), that was developed from aerial photography flown in April 1994 (References 49, 50, and 51). The below-water portion of this DTM was developed from recent channel surveys and existing HEC-2 models using CHANNEL, an ARC/INFO software application (References 52, 30, and 53). When appropriate, bridge geometries were taken from existing HEC-2 models. New or recently renovated or altered structures were modeled using as-built drawings provided by the Delaware River Joint Toll Bridge Commission.

Cross sections for the lower portion of the Lehigh River and Saucon Creek were obtained from a DTM that was developed from aerial photography flown in April 1996 (References 54, 55, and 51). Cross sections for the upper portion of the Lehigh River (within Carbon County) were obtained from a DTM that was developed for Carbon County from aerial photography flown in April 1990 (References 51, 56, and 57). The below-water portion of these DTMs for the Lehigh River was developed from existing HEC-2 models using CHANNEL, an ARC/INFO software application (References 28 and 53). Bridge geometry was obtained from existing HEC-2 models, new bridge surveys, and as-built drawings provided by the Pennsylvania Department of Transportation.

Water-surface elevations for the selected recurrence intervals were computed using the USACE HEC-2 standard step-backwater program (Reference 38). The HEC-2 hydraulic models of the Delaware River were calibrated against available gage information. The final profiles all match gage rating curves within acceptable tolerances. Comparisons were made with high water marks collected during the flood of 1955, the flood of record for the Delaware River. These marks were also modeled within acceptable limits.

Water-surface elevations for the selected recurrence intervals were computed using the USACE HEC-RAS (River Analysis System) program (Reference 58). The HEC-RAS hydraulic models for the Lehigh River were calibrated against available gage information. The final profiles all match gage rating curves within acceptable tolerances. Comparisons were made with high water marks collected during the

flood of 1955, the flood of record for the Lehigh River. These marks were also modeled within acceptable limits.

Starting water-surface elevations for the Delaware River were set at the one-year tide as obtained from the Philadelphia Tide Gage. Starting water-surface elevations for the Lehigh River were calculated using modified gage data and surveyed cross sections. Starting water-surface elevations for normal-fall profiles on the Lehigh River were determined by weir computations for the dam at its mouth. Manual computations were made to determine water-surface elevations at the dams.

### **This Revision**

New hydraulic modeling was conducted for Nancy Run, superseding previous analyses. HEC-RAS Version 4.0 was used for the hydraulic analysis. GeoRAS Version 4.2.93 for ArcGIS 9.3 was used to generate the required geometry file from the terrain. A RAMPP in-house toolset was used to generate the 3-D elevations from the Terrain and to snap the channel geometry from field-surveyed cross sections for streams studied by detailed methods. Check-RAS version 1.4 was used to verify the model (Reference 59).

For the Delaware River, cross sections were obtained from two-foot contour data developed from LiDAR data collected in the spring of 2008 with two-foot contour accuracy. Below-water sections were obtained by field surveys. All bridges, wing dams, and miscellaneous structures were field surveyed to obtain elevation data and structural geometry. As-built drawings provided by Delaware River Joint Toll Bridge Commission were utilized to supplement survey data where needed. Water-surface elevations for the selected recurrence intervals were computed through use of the USACE HEC-RAS 4.0 step-backwater computer program (Reference 59). The HEC-RAS model was calibrated to the recorded high water mark elevations from the flood event of April 2005 (Reference 60). The Manning's "n" values were adjusted within reasonable parameters so that the computed water surface elevations generally matched the recorded high water marks. Comparisons were made with high water mark elevations collected for floods of August 1955 and June 2006. The results were within acceptable limits. The Delaware River remains under tidal influence downstream from its mouth to approximately 600 feet downstream of U.S. Route 1 in the Borough of Morrisville, Pennsylvania (the corresponding community on the New Jersey side of the river is City of Trenton). Starting water-surface elevations were set per tidal conditions established in Bucks County, Pennsylvania FIS (Reference 61) and per NJDEP Delineation of Floodway & Flood Hazard Area Maps for the City of Trenton (Reference 62).

For all streams studied by approximate methods, water surface profiles were computed using HEC-RAS steady state simulation. HEC-RAS applies a peak discharge at each cross section to determine a maximum water surface elevation. The elevations are calculated using the standard step method and the energy, continuity, and Manning equations. A subcritical flow regime was assumed for all

reaches. Manning's n-values were derived based on land use data obtained from Pennsylvania Spatial Data Access (PASDA).

Roughness coefficients (Manning's "n") used in the hydraulic computations were chosen based on field inspection. Table 4, "Manning' "n" Values," provides a listing of roughness coefficients used in the models.

TABLE 4 - MANNING'S "N" VALUES

| <u>Stream</u>                                   | <u>Channel "n"</u> | <u>Overbank "n"</u> |
|-------------------------------------------------|--------------------|---------------------|
| Black River                                     | 0.025-0.035        | 0.050-0.090         |
| Bushkill Creek                                  | 0.030-0.075        | 0.040-0.125         |
| Catasauqua Creek                                | 0.035              | 0.040-0.050         |
| Delaware River                                  | 0.020-0.100        | 0.035-0.100         |
| East Branch Monocacy Creek                      | 0.036-0.048        | 0.036-0.048         |
| Hokendauqua Creek                               | 0.030-0.045        | 0.020-0.090         |
| Jacoby Creek                                    | 0.025-0.045        | 0.060-0.120         |
| Lehigh River                                    | 0.025-0.050        | 0.035-0.120         |
| Little Bushkill Creek                           | 0.040-0.045        | 0.040-0.080         |
| Little Martins Creek                            | 0.040-0.045        | 0.040-0.080         |
| Martins Creek                                   | 0.032-0.045        | 0.035-0.120         |
| Monocacy Creek                                  | 0.025-0.070        | 0.035-0.180         |
| Nancy Run                                       | 0.035-0.062        | 0.045-0.070         |
| Saucon Creek                                    | 0.030-0.040        | 0.050-0.100         |
| Shoeneck Creek                                  | *                  | *                   |
| Silver Creek                                    | 0.025-0.035        | 0.050-0.150         |
| Unnamed Tributary to East Branch Monocacy Creek | 0.036-0.048        | 0.036-0.048         |
| Unnamed Tributary to Martins Creek              | 0.032-0.038        | 0.035-0.100         |
| Unnamed Tributary to Waltz Creek                | 0.032-0.038        | 0.035-0.100         |
| Waltz Creek                                     | 0.026-0.045        | 0.040-0.080         |
| West Branch Little Bushkill Creek               | 0.030-0.045        | 0.040-0.100         |

\*Data not available

Qualifying bench marks within a given jurisdiction are cataloged by the National Geodetic Survey (NGS) and entered into the National Spatial Reference System (NSRS). First or Second Order Vertical bench marks that have a vertical stability classification of A, B, or C are shown and labeled on the FIRM with their 6-character NSRS Permanent Identifier.

Bench marks cataloged by the NGS and entered into the NSRS vary widely in vertical stability classification. NSRS vertical stability classifications are as follows:

Stability A: Monuments of the most reliable nature, expected to hold position/elevation well (e.g., mounted in bedrock)

Stability B: Monuments which generally hold their position/elevation well (e.g., concrete bridge abutments)

Stability C: Monuments which may be affected by surface ground movements (e.g., concrete mounted below frost line)

Stability D: Mark of questionable or unknown vertical stability (e.g., concrete monument above frost line, or steel witness post)

In addition to NSRS bench marks, the FIRM may also show vertical control monument established by a local jurisdiction; these monuments will be shown on the FIRM with the appropriate designations. Local monuments will only be placed on the FIRM if the community has requested that they be included, and if the monuments meet the aforementioned NSRS inclusion criteria.

To obtain current elevation, description, and/or location information for bench marks shown on the FIRM for this jurisdiction, please contact the Information Services Branch of the NGS at (301) 713-3242, or visit their Web site, [www.ngs.noaa.gov](http://www.ngs.noaa.gov).

It is important to note that temporary vertical monuments are often established during the preparation of a flood hazard analysis for the purposes of establishing local vertical control. Although these monuments are not shown on the digital FIRM, they may be found in the Technical Support Data Notebook associated with this FIS and FIRM. Interested individuals may contact FEMA to access this data.

### 3.3 Vertical Datum

All FISs and FIRMs are referenced to a specific vertical datum. The vertical datum provides a starting point against which flood, ground, and structure elevations can be referenced and compared. Until recently, the standard vertical datum in use for newly created or revised FISs and FIRMs was the National Geodetic Vertical Datum of 1929 (NGVD 29). With the finalization of the North American Vertical Datum (NAVD 88), many FIS reports and FIRMs are being prepared using NAVD 88 as the referenced vertical datum.

All flood elevations shown in the FIS report and on the FIRM are referenced to NAVD88. Structure and ground elevations in the community must, therefore, be referenced to NAVD 88. It is important to note that adjacent communities may be referenced to NGVD 29. This may result in differences in base flood elevations across corporate limits between the communities.

As noted above, the elevations shown in the FIS report and on the FIRM for Northampton County are referenced to NAVD 88. Ground, structure, and flood elevations may be compared and/or referenced to NGVD 29 by applying a standard conversion factor. The conversion factor from NGVD 29 to NAVD 88 for Northampton County is -0.679 foot. The locations used to establish the conversion factor were USGS 7.5-minute topographic quadrangle corners that fell within the County, as well as those that were within 2.5 miles outside the County. The bench marks are referenced to NAVD 88.

All elevations from the original FISs were referenced to NGVD29, but were converted to NAVD88 for this revised countywide FIS using a conversion factor of -0.679 feet.

$$\text{NGVD29} - 0.679 \text{ ft} = \text{NAVD88}$$

The BFEs shown on the FIRM represent whole-foot rounded values. For example, a BFE of 102.4 will appear as 102 on the FIRM and 102.6 will appear as 103. Therefore, users that wish to convert the elevations in this FIS to NGVD 29 should apply the conversion factor (+0.679 foot) to elevations shown on the Flood Profiles and supporting data tables in this FIS report, which are shown at a minimum to the nearest 0.1 foot.

For more information on NAVD 88, see *Converting the National Flood Insurance Program to the North American Vertical Datum of 1988* (Reference 34) or contact the Spatial Reference System Division, National Geodetic Survey, National Oceanic and Atmospheric Administration, Silver Spring Metro Center 3, 1315 East-West Highway, Silver Spring, Maryland 20910-3282, (301) 713-3242, or visit their web site at [www.ngs.noaa.gov](http://www.ngs.noaa.gov).

## 4.0 FLOODPLAIN MANAGEMENT APPLICATIONS

The NFIP encourages State and local governments to adopt sound floodplain management programs. To assist in this endeavor, each FIS provides 1-percent-annual-chance floodplain data, which may include a combination of the following: 10-, 2-, 1-, and 0.2-percent-annual-chance flood elevations; delineations of the 1- and 0.2-percent-annual-chance floodplains; and the 1-percent-annual-chance floodway. This information is presented on the FIRM and in many components of the FIS, including Flood Profiles, and Floodway Data tables. Users should reference the data presented in the FIS as well as additional information that may be available at the local Community Map Repository before making flood elevation and/or floodplain boundary determinations.

### 4.1 Floodplain Boundaries

To provide a national standard without regional discrimination, the 1-percent-annual-chance flood has been adopted by FEMA as the base flood for

floodplain management purposes. The 0.2-percent-annual-chance flood is employed to indicate additional areas of flood risk in the community. For the streams studied in detail, the 1- and 0.2-percent-annual-chance floodplain boundaries have been delineated using the flood elevations determined at each cross section.

LiDAR technology was used as the terrain data source for restudied streams, and for redelineation of unrevised detailed and approximate floodplains in this study. This hi-resolution terrain data allows for more accuracy in floodplain mapping. The data was collected under the PAMAP program for several counties in Pennsylvania in Spring 2008.

The 1- and 0.2-percent-annual-chance floodplain boundaries are shown on the FIRM (Exhibit 2). On this map, the 1-percent-annual-chance floodplain boundary corresponds to the boundary of the areas of special flood hazards (Zones A and AE, AH, AO, A99, V, and VE), and the 0.2-percent-annual-chance floodplain boundary corresponds to the boundary of moderate flood hazards. In cases where the 1- and 0.2-percent-annual-chance floodplain boundaries are close together, only the 1-percent-annual-chance floodplain boundary has been shown. Small areas within the floodplain boundaries may lie above the flood elevation but cannot be shown due to limitations of the map scale and/or lack of detailed topographic data.

For the streams studied by approximate methods, only the 1-percent-annual-chance floodplain boundary is shown on the FIRM.

#### 4.2 Floodways

Encroachment on floodplains, such as structures and fill, reduces flood-carrying capacity, increases flood heights and velocities, and increases flood hazards in areas beyond the encroachment itself. One aspect of floodplain management involves balancing the economic gain from floodplain development against the resulting increase in flood hazard. For purposes of the NFIP, a floodway is used as a tool to assist local communities in this aspect of floodplain management. Under this concept, the area of the 1-percent-annual-chance floodplain is divided into a floodway and a floodway fringe. The floodway is the channel of a stream, plus any adjacent floodplain areas, that must be kept free of encroachment so that the 1-percent-annual-chance flood can be carried without substantial increases in flood heights. Minimum Federal standards limit such increases to 1.0 foot, provided that hazardous velocities are not produced. The floodways in this FIS are presented to local agencies as a minimum standard that can be adopted directly or that can be used as a basis for additional floodway studies.

Encroachment into areas subject to inundation by floodwaters having hazardous velocities aggravates the risk of flood damage, and heightens potential flood hazards by further increasing velocities. A listing of stream velocities at selected cross sections is provided in Table 5, “Floodway Data.” To reduce the risk of

property damage in areas where the stream velocities are high, the community may wish to restrict development in areas outside the floodway.

The floodways presented in this study were computed for certain stream segments on the basis of equal conveyance reduction from each side of the floodplain. Floodway widths were computed at cross sections. Between cross sections, the floodway boundaries were interpolated. The results of the floodway computations are tabulated for selected cross sections (Table 5, "Floodway Data"). The computed floodway is shown on the FIRM (Exhibit 2). In cases where the floodway and 1-percent-annual-chance floodplain boundaries are either close together or collinear, only the floodway boundary is shown.

Near the mouths of streams studied in detail, floodway computations are made without regard to flood elevations on the receiving water body. Therefore, "Without Floodway" elevations presented in Table 5 for certain downstream cross sections of Bushkill Creek Reach 1, Hokendauqua Creek Reach 1, Jacoby Creek, Lehigh River, Martins Creek Reach 1, Monocacy Creek Reach 1, Saucon Creek, and Silver Creek, are lower than the regulatory flood elevations in that area, which must take into account the 1-percent-annual-chance flooding due to backwater from other sources.

Portions of the floodways for the Delaware River, Lehigh River, and Monocacy Creek extend beyond the county boundary.

No floodway was computed for the following streams: Bushkill Creek Reach 2, Bushkill Creek Reach 3, East Branch Monocacy Creek, Monocacy Creek Reach 2, Unnamed Tributary to East Branch Monocacy Creek, Unnamed Tributary to Martins Creek Reach 1, and Unnamed Tributary to Waltz Creek.

The study of the Delaware River performed for counties in New Jersey was incorporated. As a requirement of the New Jersey Department of Environmental Protection, floodway based on 0.2 foot encroachment was computed for Delaware River. In addition to the standard floodway data, information on the 0.2 ft encroachment floodway is presented in Table 5, "Floodway Data", in the form of "Width within county (0.2 ft encroachment)". Should any community decide to adopt a more stringent regulation standard, the boundary of the 0.2 ft encroachment floodway can be determined at each cross section by measuring from the county boundary along the cross section on the FIRM. Please note that there are "holes" in the floodway at some locations. While the 1.0-ft encroachment width listed in Table 5 does not include the "holes", for the 0.2-ft encroachment floodway, the width is computed with the "holes" filled, so that the outmost boundary of the 0.2-ft encroachment floodway can be determined for regulation purposes. Cross sections that go through "holes" in the 0.2-ft encroachment floodway are marked out by a footnote in Table 5. Digital files showing the 0.2 ft encroachment floodway can be obtained through FEMA.

| FLOODING SOURCE        |                     | FLOODWAY        |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                  |          |
|------------------------|---------------------|-----------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|------------------|----------|
| CROSS SECTION          | DISTANCE            | WIDTH<br>(FEET) | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY | INCREASE |
| Black River            |                     |                 |                                     |                                          |                                                         |                     |                  |          |
| A                      | 310 <sup>1</sup>    | 330             | 940                                 | 2.4                                      | 302.6                                                   | 302.6               | 302.6            | 0.0      |
| B                      | 1,750 <sup>1</sup>  | 110             | 310                                 | 7.4                                      | 310.4                                                   | 310.4               | 310.5            | 0.1      |
| C                      | 4,430 <sup>1</sup>  | 110             | 300                                 | 6.0                                      | 333.4                                                   | 333.4               | 333.9            | 0.5      |
| D                      | 7,000 <sup>1</sup>  | 120             | 270                                 | 6.6                                      | 352.8                                                   | 352.8               | 352.9            | 0.1      |
| E                      | 9,060 <sup>1</sup>  | 130             | 290                                 | 6.2                                      | 380.1                                                   | 380.1               | 380.1            | 0.0      |
| F                      | 10,870 <sup>1</sup> | 250             | 680                                 | 1.7                                      | 405.2                                                   | 405.2               | 405.2            | 0.0      |
| G                      | 13,590 <sup>1</sup> | 100             | 200                                 | 6.2                                      | 484.9                                                   | 484.9               | 484.9            | 0.0      |
| Bushkill Creek Reach 1 |                     |                 |                                     |                                          |                                                         |                     |                  |          |
| A                      | 220 <sup>2</sup>    | 110             | 1,197                               | 8.0                                      | 196.2                                                   | 168.2 <sup>3</sup>  | 168.2            | 0.0      |
| B                      | 751 <sup>2</sup>    | 76              | 830                                 | 11.6                                     | 196.2                                                   | 170.2 <sup>3</sup>  | 170.2            | 0.0      |
| C                      | 1,345 <sup>2</sup>  | 167             | 767                                 | 12.5                                     | 196.2                                                   | 172.4 <sup>3</sup>  | 172.5            | 0.1      |
| D                      | 1,584 <sup>2</sup>  | 91              | 710                                 | 13.5                                     | 196.2                                                   | 178.5 <sup>3</sup>  | 178.6            | 0.1      |
| E                      | 1,950 <sup>2</sup>  | 115             | 1,195                               | 8.0                                      | 196.2                                                   | 181.1 <sup>3</sup>  | 181.3            | 0.2      |
| F                      | 2,600 <sup>2</sup>  | 158             | 1,856                               | 8.6                                      | 196.2                                                   | 182.4 <sup>3</sup>  | 182.6            | 0.2      |
| G                      | 2,745 <sup>2</sup>  | 66              | 900                                 | 10.7                                     | 196.2                                                   | 182.4 <sup>3</sup>  | 182.6            | 0.2      |
| H                      | 3,745 <sup>2</sup>  | 116             | 867                                 | 11.1                                     | 196.2                                                   | 188.2 <sup>3</sup>  | 188.5            | 0.3      |
| I                      | 4,910 <sup>2</sup>  | 105             | 1,203                               | 8.0                                      | 196.2                                                   | 190.9 <sup>3</sup>  | 191.0            | 0.1      |
| J                      | 5,180 <sup>2</sup>  | 63              | 833                                 | 11.5                                     | 196.2                                                   | 193.3 <sup>3</sup>  | 193.8            | 0.5      |
| K                      | 6,390 <sup>2</sup>  | 178             | 1,193                               | 8.1                                      | 196.2                                                   | 195.8 <sup>3</sup>  | 196.0            | 0.2      |

<sup>1</sup>Feet above Friedensville Road

<sup>2</sup>Feet above confluence with Delaware River

<sup>3</sup>Elevation computed without consideration of backwater effects from Delaware River

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

FLOODWAY DATA

BLACK RIVER – BUSHKILL CREEK REACH 1

| FLOODING SOURCE                       |                     | FLOODWAY            |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                  |          |
|---------------------------------------|---------------------|---------------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|------------------|----------|
| CROSS SECTION                         | DISTANCE            | WIDTH<br>(FEET)     | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY | INCREASE |
| Bushkill Creek Reach 1<br>(continued) |                     |                     |                                     |                                          |                                                         |                     |                  |          |
| L                                     | 6,870 <sup>1</sup>  | 129                 | 1,123                               | 8.6                                      | 198.3                                                   | 198.3               | 198.4            | 0.1      |
| M                                     | 9,065 <sup>1</sup>  | 135                 | 1,309                               | 7.3                                      | 205.2                                                   | 205.2               | 205.4            | 0.2      |
| N                                     | 9,825 <sup>1</sup>  | 145                 | 1,572                               | 6.1                                      | 209.9                                                   | 209.9               | 210.0            | 0.1      |
| O                                     | 11,430 <sup>1</sup> | 98                  | 959                                 | 10.0                                     | 213.2                                                   | 213.2               | 213.3            | 0.1      |
| P                                     | 11,850 <sup>1</sup> | 78                  | 989                                 | 9.7                                      | 214.7                                                   | 214.7               | 214.8            | 0.1      |
| Q                                     | 12,175 <sup>1</sup> | 73                  | 865                                 | 11.1                                     | 215.7                                                   | 215.7               | 215.8            | 0.1      |
| R                                     | 12,455 <sup>1</sup> | 96                  | 979                                 | 9.8                                      | 217.3                                                   | 217.3               | 217.4            | 0.1      |
| S                                     | 12,940 <sup>1</sup> | 169                 | 1,040                               | 9.2                                      | 226.5                                                   | 226.5               | 226.6            | 0.1      |
| T                                     | 13,720 <sup>1</sup> | 70                  | 731                                 | 13.1                                     | 226.9                                                   | 226.9               | 227.1            | 0.2      |
| U                                     | 14,190 <sup>1</sup> | 79                  | 885                                 | 10.8                                     | 231.2                                                   | 231.2               | 231.2            | 0.0      |
| V                                     | 17,355 <sup>1</sup> | 180                 | 1,569                               | 6.2                                      | 243.6                                                   | 243.6               | 243.9            | 0.3      |
| W                                     | 22,700 <sup>1</sup> | 160                 | 1,462                               | 6.3                                      | 256.4                                                   | 256.4               | 257.1            | 0.7      |
| X                                     | 27,180 <sup>1</sup> | 120                 | 1,070                               | 8.2                                      | 268.8                                                   | 268.8               | 269.4            | 0.6      |
| Y                                     | 29,430 <sup>1</sup> | 200                 | 746                                 | 11.8                                     | 275.7                                                   | 275.7               | 276.3            | 0.6      |
| Z                                     | 31,550 <sup>1</sup> | 100                 | 513                                 | 14.0                                     | 282.7                                                   | 282.7               | 282.7            | 0.0      |
| AA                                    | 35,180 <sup>1</sup> | 120                 | 861                                 | 8.4                                      | 301.0                                                   | 301.0               | 301.8            | 0.8      |
| AB                                    | 43,348 <sup>1</sup> | 120                 | 806                                 | 8.9                                      | 338.5                                                   | 338.5               | 339.5            | 1.0      |
| AC                                    | 44,827 <sup>1</sup> | 415                 | 2,399                               | 2.1                                      | 342.6                                                   | 342.6               | 342.6            | 0.0      |
| AD                                    | 49,843 <sup>1</sup> | 148                 | 794                                 | 6.4                                      | 369.5                                                   | 369.5               | 370.0            | 0.5      |
| Catasauqua Creek                      |                     |                     |                                     |                                          |                                                         |                     |                  |          |
| A                                     | 0 <sup>2</sup>      | 180/85 <sup>3</sup> | 1,430                               | 2.8                                      | 302.2                                                   | 302.2               | 303.2            | 1.0      |
| B                                     | 1,570 <sup>2</sup>  | 170                 | 860                                 | 4.7                                      | 304.5                                                   | 304.5               | 305.4            | 0.9      |
| C                                     | 3,420 <sup>2</sup>  | 140                 | 510                                 | 7.9                                      | 313.5                                                   | 313.5               | 314.2            | 0.7      |
| D                                     | 4,950 <sup>2</sup>  | 80                  | 400                                 | 9.9                                      | 320.5                                                   | 320.5               | 321.2            | 0.7      |

<sup>1</sup>Feet above confluence with Delaware River

<sup>2</sup>Feet above county boundary

<sup>3</sup>Width/width within county boundary

| FLOODING SOURCE |                       | FLOODWAY                     |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                  |          |
|-----------------|-----------------------|------------------------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|------------------|----------|
| CROSS SECTION   | DISTANCE <sup>1</sup> | WIDTH <sup>2</sup><br>(FEET) | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY | INCREASE |
| Delaware River  |                       |                              |                                     |                                          |                                                         |                     |                  |          |
| A               | 928.49 / 175.85       | 686/357/441                  | 27,169                              | 10.1                                     | 164.6                                                   | 164.6               | 165.6            | 1.0      |
| B               | 930.02 / 176.14       | 591/281/327                  | 20,395                              | 13.4                                     | 164.8                                                   | 164.8               | 165.7            | 0.9      |
| C               | 931.50 / 176.42       | 980/454/523                  | 31,427                              | 8.7                                      | 167.4                                                   | 167.4               | 168.4            | 1.0      |
| D               | 933.03 / 176.71       | 567/307/314                  | 25,684                              | 10.7                                     | 167.7                                                   | 167.7               | 168.6            | 0.9      |
| E               | 934.67 / 177.02       | 1,300/998/1,023              | 36,821                              | 7.4                                      | 169.3                                                   | 169.3               | 170.3            | 1.0      |
| F               | 936.04 / 177.28       | 991/794/794                  | 31,618                              | 8.7                                      | 169.8                                                   | 169.8               | 170.7            | 0.9      |
| G               | 937.46 / 177.55       | 677/324/480                  | 25,717                              | 10.7                                     | 170.2                                                   | 170.2               | 171.1            | 0.9      |
| H               | 938.89 / 177.82       | 648/371/520                  | 23,003                              | 11.9                                     | 170.8                                                   | 170.8               | 171.6            | 0.8      |
| I               | 940.47 / 178.12       | 760/313/510                  | 25,999                              | 10.5                                     | 172.3                                                   | 172.3               | 173.2            | 0.9      |
| J               | 942.06 / 178.42       | 974/231/310                  | 31,388                              | 8.7                                      | 173.8                                                   | 173.8               | 174.6            | 0.8      |
| K               | 943.54 / 178.70       | 753/374/446                  | 25,674                              | 10.7                                     | 174.2                                                   | 174.2               | 175.0            | 0.8      |
| L               | 944.96 / 178.97       | 699/387/467                  | 26,936                              | 10.2                                     | 175.2                                                   | 175.2               | 176.0            | 0.8      |
| M               | 946.49 / 179.26       | 1,071/885/969                | 31,877                              | 8.6                                      | 176.4                                                   | 176.4               | 177.2            | 0.8      |
| N               | 948.02 / 179.55       | 1,011/394/469                | 33,619                              | 8.2                                      | 177.3                                                   | 177.3               | 178.1            | 0.8      |
| O               | 949.45 / 179.82       | 728/382/450                  | 24,726                              | 11.1                                     | 177.5                                                   | 177.5               | 178.2            | 0.8      |
| P               | 950.98 / 180.11       | 633/316/416                  | 24,163                              | 11.3                                     | 178.4                                                   | 178.4               | 179.1            | 0.7      |
| Q               | 952.51 / 180.40       | 585/308/411                  | 21,617                              | 12.7                                     | 179.1                                                   | 179.1               | 179.8            | 0.7      |
| R               | 953.99 / 180.68       | 847/683/771                  | 28,611                              | 9.6                                      | 181.1                                                   | 181.1               | 182.0            | 0.9      |
| S               | 955.63 / 180.99       | 523/288/412                  | 19,329                              | 14.2                                     | 181.2                                                   | 181.2               | 182.1            | 0.9      |
| T               | 957.37 / 181.32       | 580/365/443                  | 21,020                              | 13.0                                     | 183.9                                                   | 183.9               | 184.8            | 0.9      |
| U               | 959.90 / 181.80       | 630/375/485                  | 23,951                              | 11.4                                     | 186.5                                                   | 186.5               | 187.4            | 0.9      |
| V               | 961.44 / 182.09       | 598/332/332                  | 23,167                              | 11.8                                     | 187.1                                                   | 187.1               | 188.1            | 1.0      |
| W               | 962.97 / 182.38       | 675/267/410                  | 26,412                              | 10.4                                     | 188.3                                                   | 188.3               | 189.1            | 0.8      |
| X               | 964.50 / 182.67       | 716/374/399                  | 26,376                              | 10.4                                     | 188.6                                                   | 188.6               | 189.5            | 0.9      |
| Y               | 966.45 / 183.04       | 776/448/457                  | 26,670                              | 10.1                                     | 189.3                                                   | 189.3               | 190.2            | 0.9      |
| Z               | 967.67 / 183.27       | 924/613/627                  | 29,724                              | 9.8                                      | 190.8                                                   | 190.8               | 191.7            | 0.9      |

<sup>1</sup> Thousands of feet above mouth / Miles above mouth

<sup>2</sup> Total width / Width within county (1% annual chance encroachment) / Width within county (0.2% annual chance encroachment)

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

FLOODWAY DATA

DELAWARE RIVER

| FLOODING SOURCE            |                       | FLOODWAY                     |                               |                                    | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                  |               |          |
|----------------------------|-----------------------|------------------------------|-------------------------------|------------------------------------|---------------------------------------------------------|------------------|---------------|----------|
| CROSS SECTION              | DISTANCE <sup>1</sup> | WIDTH <sup>2</sup><br>(FEET) | SECTION AREA<br>(SQUARE FEET) | MEAN VELOCITY<br>(FEET PER SECOND) | REGULATORY                                              | WITHOUT FLOODWAY | WITH FLOODWAY | INCREASE |
| Delaware River (continued) |                       |                              |                               |                                    |                                                         |                  |               |          |
| AA                         | 968.46 / 183.42       | 718 / 401 / 500              | 24,339                        | 11.1                               | 191.5                                                   | 191.5            | 192.4         | 0.9      |
| AB                         | 969.46 / 183.61       | 489 / 255 / 331              | 20,965                        | 12.9                               | 194.3                                                   | 194.3            | 195.3         | 1.0      |
| AC                         | 970.68 / 183.84       | 675 / 468 / 483              | 25,400                        | 10.7                               | 196.2                                                   | 196.2            | 197.2         | 1.0      |
| AD                         | 972.00 / 184.09       | 687 / 462 / 472              | 25,289                        | 9.9                                | 196.9                                                   | 196.9            | 197.8         | 0.9      |
| AE                         | 973.47 / 184.37       | 581 / 302 / 302              | 22,160                        | 11.3                               | 197.0                                                   | 197.0            | 198.0         | 1.0      |
| AF                         | 974.95 / 184.65       | 527 / 276 / 305              | 22,197                        | 11.2                               | 197.5                                                   | 197.5            | 198.5         | 1.0      |
| AG                         | 976.54 / 184.95       | 571 / 293 / 309              | 22,143                        | 11.3                               | 198.0                                                   | 198.0            | 199.0         | 1.0      |
| AH                         | 977.96 / 185.22       | 679 / 344 / 355              | 25,468                        | 9.8                                | 199.1                                                   | 199.1            | 200.0         | 0.9      |
| AI                         | 979.44 / 185.50       | 456 / 263 / 315              | 18,831                        | 13.3                               | 199.2                                                   | 199.2            | 200.1         | 0.9      |
| AJ                         | 980.97 / 185.79       | 611 / 325 / 351              | 25,145                        | 9.9                                | 201.4                                                   | 201.4            | 202.3         | 0.9      |
| AK                         | 982.45 / 186.07       | 651 / 339 / 414              | 24,430                        | 10.2                               | 202.1                                                   | 202.1            | 203.0         | 0.9      |
| AL                         | 983.98 / 186.36       | 708 / 440 / 454              | 24,839                        | 10.0                               | 203.0                                                   | 203.0            | 203.9         | 0.9      |
| AM                         | 985.46 / 186.64       | 678 / 422 / 663              | 24,836                        | 10.0                               | 203.9                                                   | 203.9            | 204.7         | 0.8      |
| AN                         | 986.99 / 186.93       | 778 / 429 / 451              | 26,538                        | 9.4                                | 204.7                                                   | 204.7            | 205.7         | 1.0      |
| AO                         | 988.47 / 187.21       | 822 / 441 / 451              | 28,010                        | 8.9                                | 205.6                                                   | 205.6            | 206.5         | 0.9      |
| AP                         | 990.00 / 187.50       | 812 / 390 / 412              | 25,639                        | 9.7                                | 206.3                                                   | 206.3            | 207.2         | 0.9      |
| AQ                         | 991.64 / 187.81       | 773 / 279 / 360              | 23,269                        | 10.7                               | 207.2                                                   | 207.2            | 208.0         | 0.8      |
| AR                         | 992.96 / 188.06       | 517 / 269 / 269              | 18,422                        | 13.5                               | 207.7                                                   | 207.7            | 208.5         | 0.8      |
| AS                         | 994.49 / 188.35       | 577 / 287 / 375              | 22,062                        | 11.3                               | 209.8                                                   | 209.8            | 210.6         | 0.8      |
| AT                         | 996.02 / 188.64       | 548 / 286 / 438              | 22,072                        | 11.3                               | 210.7                                                   | 210.7            | 211.6         | 0.9      |
| AU                         | 997.50 / 188.92       | 653 / 351 / 435              | 22,021                        | 11.3                               | 211.7                                                   | 211.7            | 212.5         | 0.8      |
| AV                         | 998.92 / 189.19       | 499 / 308 / 472              | 18,666                        | 13.4                               | 212.3                                                   | 212.3            | 213.2         | 0.9      |
| AW                         | 1000.56 / 189.50      | 662 / 390 / 465              | 24,906                        | 10.0                               | 214.7                                                   | 214.7            | 215.6         | 0.9      |
| AX                         | 1001.99 / 189.77      | 819 / 441 / 468              | 26,287                        | 9.5                                | 215.5                                                   | 215.5            | 216.5         | 1.0      |
| AY                         | 1003.46 / 190.05      | 891 / 660 / 702              | 28,478                        | 8.8                                | 216.3                                                   | 216.3            | 217.2         | 0.9      |
| AZ                         | 1004.94 / 190.33      | 711 / 325 / 484              | 22,637                        | 11.0                               | 216.3 <sup>3</sup>                                      | 216.2            | 217.1         | 0.9      |

<sup>1</sup>Thousands of feet above mouth / Miles above mouth

<sup>2</sup>Total width / Width within county (1% annual chance encroachment) / Width within county (0.2% annual chance encroachment)

<sup>3</sup>Regulatory elevation of downstream cross section is applied at this cross section due to naturally occurring drawdown condition

| FLOODING SOURCE            |                       | FLOODWAY                     |                               |                                    | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                  |               |          |
|----------------------------|-----------------------|------------------------------|-------------------------------|------------------------------------|---------------------------------------------------------|------------------|---------------|----------|
| CROSS SECTION              | DISTANCE <sup>1</sup> | WIDTH <sup>2</sup><br>(FEET) | SECTION AREA<br>(SQUARE FEET) | MEAN VELOCITY<br>(FEET PER SECOND) | REGULATORY                                              | WITHOUT FLOODWAY | WITH FLOODWAY | INCREASE |
| Delaware River (continued) |                       |                              |                               |                                    |                                                         |                  |               |          |
| BA                         | 1006.32 / 190.59      | 610 / 286 / 290              | 22,117                        | 11.3                               | 218.0                                                   | 218.0            | 218.9         | 0.9      |
| BB                         | 1008.06 / 190.92      | 1,227 / 630 / 646            | 39,847                        | 7.3                                | 220.0                                                   | 220.0            | 220.9         | 0.9      |
| BC                         | 1009.43 / 191.18      | 1,221 / 761 / 773            | 37,865                        | 7.2                                | 220.6                                                   | 220.6            | 221.5         | 0.9      |
| BD                         | 1010.96 / 191.47      | 1,172 / 972 / 980            | 33,547                        | 7.4                                | 221.3                                                   | 221.3            | 222.2         | 0.9      |
| BE                         | 1012.44 / 191.75      | 1,316 / 1,136 / 1,136        | 35,767                        | 7.0                                | 222.2                                                   | 222.2            | 223.0         | 0.8      |
| BF                         | 1013.81 / 192.01      | 681 / 360 / 364              | 21,030                        | 11.9                               | 222.3                                                   | 222.3            | 223.0         | 0.7      |
| BG                         | 1015.56 / 192.34      | 666 / 341 / 414              | 21,459                        | 11.6                               | 224.1                                                   | 224.1            | 224.8         | 0.7      |
| BH                         | 1016.93 / 192.60      | 688 / 394 / 540              | 23,823                        | 10.5                               | 225.8                                                   | 225.8            | 226.4         | 0.6      |
| BI                         | 1018.46 / 192.89      | 847 / 332 / 419              | 26,548                        | 9.4                                | 227.2                                                   | 227.2            | 227.8         | 0.6      |
| BJ                         | 1019.99 / 193.18      | 823 / 346 / 346              | 25,956                        | 9.6                                | 228.0                                                   | 228.0            | 228.6         | 0.6      |
| BK                         | 1021.47 / 193.46      | 912 / 412 / 412              | 27,593                        | 9.0                                | 228.7                                                   | 228.7            | 229.3         | 0.6      |
| BL                         | 1022.95 / 193.74      | 683 / 347 / 347              | 23,174                        | 10.8                               | 228.9                                                   | 228.9            | 229.6         | 0.7      |
| BM                         | 1023.95 / 193.93      | 792 / 532 / 576              | 23,631                        | 10.6                               | 229.2                                                   | 229.2            | 230.0         | 0.8      |
| BN                         | 1025.11 / 194.15      | 746 / 504 / 504              | 21,473                        | 11.6                               | 230.0                                                   | 230.0            | 230.7         | 0.7      |
| BO                         | 1025.80 / 194.28      | 990 / 727 / 727              | 27,500                        | 9.1                                | 231.3                                                   | 231.3            | 231.9         | 0.6      |
| BP                         | 1027.49 / 194.60      | 1,610 / 1,258 / 1,258        | 38,619                        | 6.5                                | 232.5                                                   | 232.5            | 233.1         | 0.6      |
| BQ                         | 1028.91 / 194.87      | 572 / 283 / 283              | 17,753                        | 14.1                               | 232.5 <sup>3</sup>                                      | 232.0            | 232.6         | 0.6      |
| BR                         | 1030.44 / 195.16      | 665 / 354 / 363              | 19,753                        | 12.6                               | 234.9                                                   | 234.9            | 235.4         | 0.5      |
| BS                         | 1031.98 / 195.45      | 922 / 459 / 468              | 30,627                        | 8.2                                | 237.6                                                   | 237.6            | 238.1         | 0.5      |
| BT                         | 1033.51 / 195.74      | 616 / 289 / 289              | 17,900                        | 13.9                               | 237.6 <sup>3</sup>                                      | 237.3            | 237.9         | 0.6      |
| BU                         | 1034.99 / 196.02      | 455 / 199 / 199              | 11,628                        | 21.4                               | 238.4                                                   | 238.4            | 239.0         | 0.6      |
| BV                         | 1036.41 / 196.29      | 727 / 361 / 361              | 22,791                        | 11.0                               | 247.1                                                   | 247.1            | 247.4         | 0.3      |
| BW                         | 1038.00 / 196.59      | 787 / 326 / 326              | 20,199                        | 12.4                               | 248.4                                                   | 248.4            | 248.8         | 0.4      |
| BX                         | 1039.47 / 196.87      | 713 / 300 / 317              | 19,021                        | 13.1                               | 250.1                                                   | 250.1            | 250.5         | 0.4      |
| BY                         | 1040.95 / 197.15      | 788 / 448 / 911              | 18,910                        | 13.2                               | 252.4                                                   | 252.4            | 252.7         | 0.3      |
| BZ                         | 1042.75 / 197.49      | 651 / 340 / 1,078            | 20,352                        | 12.2                               | 255.0                                                   | 255.0            | 255.3         | 0.3      |

<sup>1</sup>Thousands of feet above mouth / Miles above mouth

<sup>2</sup>Total width / Width within county (1% annual chance encroachment) / Width within county (0.2% annual chance encroachment)

<sup>3</sup>Regulatory elevation of downstream cross section is applied at this cross section due to naturally occurring drawdown condition

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

FLOODWAY DATA

DELAWARE RIVER

| FLOODING SOURCE            |                       | FLOODWAY                     |                               |                                    | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                  |               |          |
|----------------------------|-----------------------|------------------------------|-------------------------------|------------------------------------|---------------------------------------------------------|------------------|---------------|----------|
| CROSS SECTION              | DISTANCE <sup>1</sup> | WIDTH <sup>2</sup><br>(FEET) | SECTION AREA<br>(SQUARE FEET) | MEAN VELOCITY<br>(FEET PER SECOND) | REGULATORY                                              | WITHOUT FLOODWAY | WITH FLOODWAY | INCREASE |
| Delaware River (continued) |                       |                              |                               |                                    |                                                         |                  |               |          |
| CA                         | 1043.54 / 197.64      | 717 / 427 / 816              | 23,253                        | 10.7                               | 256.6                                                   | 256.6            | 257.1         | 0.5      |
| CB                         | 1044.28 / 197.78      | 238 / 582 / 618              | 23,638                        | 10.5                               | 257.1                                                   | 257.1            | 257.7         | 0.6      |
| CC                         | 1045.44 / 198.00      | 648 / 381 / 400              | 22,510                        | 11.0                               | 257.8                                                   | 257.8            | 258.4         | 0.6      |
| CD                         | 1046.97 / 198.29      | 484 / 246 / 246              | 15,936                        | 15.6                               | 257.8 <sup>4</sup>                                      | 257.7            | 258.3         | 0.6      |
| CE                         | 1048.45 / 198.57      | 533 / 255 / 255              | 16,377                        | 15.1                               | 259.1                                                   | 259.1            | 259.7         | 0.6      |
| CF                         | 1049.98 / 198.86      | 514 / 239 / 239              | 14,490                        | 17.1                               | 259.2                                                   | 259.2            | 259.8         | 0.6      |
| CG                         | 1051.56 / 199.16      | 604 / 317 / 317              | 16,662                        | 14.9                               | 261.4                                                   | 261.4            | 291.9         | 0.5      |
| CH                         | 1052.99 / 199.43      | 743 / 386 / 398              | 19,123                        | 13.0                               | 263.6                                                   | 263.6            | 264.1         | 0.5      |
| CI                         | 1054.47 / 199.71      | 838 / 346 / 346              | 24,478                        | 10.1                               | 266.6                                                   | 266.6            | 267.1         | 0.5      |
| CJ                         | 1056.05 / 200.01      | 1,135 / 246 / 246            | 29,509                        | 8.4                                | 268.6                                                   | 268.6            | 268.9         | 0.3      |
| CK                         | 1057.48 / 200.28      | 1,374 / 161 / 161            | 31,672                        | 7.8                                | 269.9                                                   | 269.9            | 270.3         | 0.4      |
| CL                         | 1059.01 / 200.57      | 834 / 455 / 926              | 21,727                        | 11.4                               | 271.0                                                   | 271.0            | 271.2         | 0.2      |
| CM                         | 1060.49 / 200.85      | 1,100 / 764 / 1,395          | 32,877                        | 7.5                                | 273.0                                                   | 273.0            | 273.6         | 0.6      |
| CN                         | 1061.91 / 201.12      | 1,577/341/1,097 <sup>3</sup> | 35,378                        | 7.0                                | 273.9                                                   | 273.9            | 274.5         | 0.6      |
| CO                         | 1063.50 / 201.42      | 2,084 / 271 / 271            | 51,807                        | 4.8                                | 274.9                                                   | 274.9            | 275.6         | 0.7      |
| CP                         | 1064.98 / 201.70      | 2,127 / 170 / 170            | 47,811                        | 5.2                                | 275.4                                                   | 275.4            | 276.0         | 0.6      |
| CQ                         | 1066.56 / 202.00      | 1,956 / 459 / 459            | 38,650                        | 6.4                                | 276.0                                                   | 276.0            | 276.6         | 0.6      |
| CR                         | 1067.99 / 202.27      | 956 / 552 / 1,174            | 24,951                        | 9.9                                | 276.6                                                   | 276.6            | 277.0         | 0.4      |
| CS                         | 1069.52 / 202.56      | 1,154/889/1,537              | 30,308                        | 8.2                                | 278.1                                                   | 278.1            | 278.8         | 0.7      |
| CT                         | 1071.00 / 202.84      | 1,246/1,000/1,734            | 31,478                        | 7.9                                | 279.0                                                   | 279.0            | 280.0         | 1.0      |
| CU                         | 1072.47 / 203.12      | 758 / 448 / 1,464            | 22,437                        | 11.1                               | 279.3                                                   | 279.3            | 280.3         | 1.0      |
| CV                         | 1073.95 / 203.40      | 660/370/1,231 <sup>3</sup>   | 22,184                        | 11.2                               | 280.2                                                   | 280.2            | 281.2         | 1.0      |
| CW                         | 1075.43 / 203.68      | 723 / 381 / 622              | 24,292                        | 10.2                               | 281.3                                                   | 281.3            | 282.3         | 1.0      |
| CX                         | 1077.01 / 203.98      | 960 / 289 / 299              | 27,212                        | 9.1                                | 282.2                                                   | 282.2            | 283.3         | 1.1      |
| CY                         | 1078.49 / 204.26      | 976 / 259 / 259              | 26,302                        | 9.5                                | 282.8                                                   | 282.8            | 283.8         | 1.0      |
| CZ                         | 1079.97 / 204.54      | 1,176 / 270 / 270            | 29,122                        | 8.5                                | 284.1                                                   | 284.1            | 285.0         | 0.9      |

<sup>1</sup>Thousands of feet above mouth / Miles above mouth

<sup>2</sup>Total width / Width within county (1% annual chance encroachment) / Width within county (0.2% annual chance encroachment)

<sup>3</sup>Cross section goes through "holes" in the 0.2-ft encroachment floodway

<sup>4</sup>Regulatory elevation of downstream cross section is applied at this cross section due to naturally occurring drawdown condition

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

FLOODWAY DATA

DELAWARE RIVER

| FLOODING SOURCE            |                       | FLOODWAY                     |                               |                                    | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                  |               |          |
|----------------------------|-----------------------|------------------------------|-------------------------------|------------------------------------|---------------------------------------------------------|------------------|---------------|----------|
| CROSS SECTION              | DISTANCE <sup>1</sup> | WIDTH <sup>2</sup><br>(FEET) | SECTION AREA<br>(SQUARE FEET) | MEAN VELOCITY<br>(FEET PER SECOND) | REGULATORY                                              | WITHOUT FLOODWAY | WITH FLOODWAY | INCREASE |
| Delaware River (continued) |                       |                              |                               |                                    |                                                         |                  |               |          |
| DA                         | 1081.45 / 204.82      | 1,416 / 268 / 268            | 32,845                        | 7.6                                | 285.3                                                   | 285.3            | 286.2         | 0.9      |
| DB                         | 1082.66 / 205.05      | 1,038 / 447 / 447            | 27,130                        | 9.1                                | 285.8                                                   | 285.8            | 286.5         | 0.7      |
| DC                         | 1084.20 / 205.34      | 532 / 278 / 292              | 19,343                        | 12.8                               | 286.4                                                   | 286.4            | 287.2         | 0.8      |
| DD                         | 1085.94 / 205.67      | 511 / 290 / 290              | 18,741                        | 13.2                               | 287.5                                                   | 287.5            | 288.4         | 0.9      |
| DE                         | 1087.47 / 205.96      | 558 / 337 / 345              | 19,036                        | 13.0                               | 288.9                                                   | 288.9            | 289.7         | 0.8      |
| DF                         | 1088.95 / 206.24      | 746 / 382 / 382              | 22,695                        | 10.9                               | 291.0                                                   | 291.0            | 291.6         | 0.6      |
| DG                         | 1090.48 / 206.53      | 663 / 349 / 393              | 22,038                        | 11.3                               | 291.9                                                   | 291.9            | 292.5         | 0.6      |
| DH                         | 1091.96 / 206.81      | 735 / 367 / 367              | 21,301                        | 11.6                               | 292.9                                                   | 292.9            | 293.5         | 0.6      |
| DI                         | 1092.91 / 206.99      | 701 / 379 / 568              | 20,004                        | 12.4                               | 293.5                                                   | 293.5            | 294.1         | 0.6      |
| DJ                         | 1093.86 / 207.17      | 878 / 498 / 551              | 24,206                        | 10.3                               | 295.6                                                   | 295.6            | 296.3         | 0.7      |
| DK                         | 1095.44 / 207.47      | 807 / 347 / 347              | 22,804                        | 10.9                               | 296.5                                                   | 296.5            | 297.2         | 0.7      |
| DL                         | 1096.50 / 207.67      | 777 / 348 / 348              | 21,880                        | 11.3                               | 296.9                                                   | 296.6            | 297.6         | 1.0      |
| DM                         | 1097.98 / 207.95      | 694 / 297 / 297              | 18,229                        | 13.6                               | 297.4                                                   | 297.4            | 298.0         | 0.6      |
| DN                         | 1099.40 / 208.22      | 611 / 236 / 240              | 16,706                        | 14.8                               | 299.1                                                   | 299.1            | 299.7         | 0.6      |
| DO                         | 1101.25 / 208.57      | 819 / 476 / 499              | 22,714                        | 10.9                               | 304.6                                                   | 304.6            | 305.0         | 0.4      |
| DP                         | 1102.46 / 208.80      | 636 / 359 / 380              | 20,750                        | 12.0                               | 305.3                                                   | 305.3            | 305.7         | 0.4      |
| DQ                         | 1104.00 / 209.09      | 547 / 361 / 443              | 15,745                        | 15.8                               | 305.8                                                   | 305.8            | 306.1         | 0.3      |
| DR                         | 1105.37 / 209.35      | 594 / 296 / 296              | 18,296                        | 13.6                               | 308.5                                                   | 308.5            | 309.0         | 0.5      |
| DS                         | 1107.00 / 209.66      | 739 / 267 / 267              | 23,343                        | 10.6                               | 311.1                                                   | 311.1            | 311.5         | 0.4      |
| DT                         | 1108.48 / 209.94      | 612 / 319 / 319              | 19,607                        | 12.7                               | 311.6                                                   | 311.6            | 312.1         | 0.5      |
| DU                         | 1110.01 / 210.23      | 872 / 184 / 221              | 24,705                        | 10.0                               | 313.9                                                   | 313.9            | 314.3         | 0.4      |
| DV                         | 1111.49 / 210.51      | 923 / 310 / 314              | 27,678                        | 9.0                                | 315.1                                                   | 315.1            | 315.5         | 0.4      |

<sup>1</sup>Thousands of feet above mouth / Miles above mouth

<sup>2</sup>Total width / Width within county (1% annual chance encroachment) / Width within county (0.2% annual chance encroachment)

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

FLOODWAY DATA

DELAWARE RIVER

| FLOODING SOURCE              |                     | FLOODWAY        |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                  |          |
|------------------------------|---------------------|-----------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|------------------|----------|
| CROSS SECTION                | DISTANCE            | WIDTH<br>(FEET) | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY | INCREASE |
| Hokendauqua Creek<br>Reach 1 |                     |                 |                                     |                                          |                                                         |                     |                  |          |
| A                            | 640 <sup>1</sup>    | 115             | 976                                 | 9.4                                      | 291.4                                                   | 288.2 <sup>2</sup>  | 288.2            | 0.0      |
| B                            | 1,630 <sup>1</sup>  | 194             | 924                                 | 9.9                                      | 291.4                                                   | 291.0 <sup>2</sup>  | 291.0            | 0.0      |
| C                            | 3,180 <sup>1</sup>  | 294             | 1,061                               | 8.6                                      | 298.5                                                   | 298.5               | 298.5            | 0.0      |
| D                            | 4,520 <sup>1</sup>  | 87              | 611                                 | 15.0                                     | 307.9                                                   | 307.9               | 307.9            | 0.0      |
| E                            | 8,470 <sup>1</sup>  | 163             | 1,279                               | 7.0                                      | 321.4                                                   | 321.4               | 321.7            | 0.3      |
| F                            | 9,590 <sup>1</sup>  | 104             | 870                                 | 10.3                                     | 323.8                                                   | 323.8               | 324.7            | 0.9      |
| G                            | 11,310 <sup>1</sup> | 188             | 836                                 | 10.7                                     | 328.3                                                   | 328.3               | 328.3            | 0.0      |
| Hokendauqua Creek<br>Reach 2 |                     |                 |                                     |                                          |                                                         |                     |                  |          |
| A                            | 540 <sup>3</sup>    | 234             | 1,986                               | 4.4                                      | 347.9                                                   | 347.9               | 348.7            | 0.8      |
| B                            | 2,340 <sup>3</sup>  | 224             | 1,493                               | 5.8                                      | 351.8                                                   | 351.8               | 352.3            | 0.5      |
| C                            | 3,340 <sup>3</sup>  | 260             | 1,250                               | 7.0                                      | 354.3                                                   | 354.3               | 355.0            | 0.7      |
| D                            | 4,390 <sup>3</sup>  | 176             | 1,094                               | 8.0                                      | 359.1                                                   | 359.1               | 359.5            | 0.4      |
| E                            | 4,930 <sup>3</sup>  | 315             | 1,645                               | 5.3                                      | 361.2                                                   | 361.2               | 362.1            | 0.9      |
| F                            | 5,660 <sup>3</sup>  | 290             | 1,648                               | 5.3                                      | 363.1                                                   | 363.1               | 363.9            | 0.8      |
| G                            | 6,310 <sup>3</sup>  | 98              | 1,054                               | 8.3                                      | 367.2                                                   | 367.2               | 367.5            | 0.3      |
| H                            | 7,090 <sup>3</sup>  | 335             | 2,510                               | 3.5                                      | 369.1                                                   | 369.1               | 369.8            | 0.7      |
| I                            | 7,680 <sup>3</sup>  | 370             | 1,238                               | 7.0                                      | 369.8                                                   | 369.8               | 370.2            | 0.4      |
| J                            | 8,120 <sup>3</sup>  | 176             | 730                                 | 7.7                                      | 373.9                                                   | 373.9               | 374.0            | 0.1      |
| K                            | 8,740 <sup>3</sup>  | 187             | 1,017                               | 5.6                                      | 377.8                                                   | 377.8               | 378.7            | 0.9      |
| L                            | 9,560 <sup>3</sup>  | 119             | 655                                 | 8.6                                      | 381.2                                                   | 381.2               | 381.7            | 0.5      |
| M                            | 11,170 <sup>3</sup> | 350             | 1,465                               | 3.9                                      | 390.3                                                   | 390.3               | 390.6            | 0.3      |
| N                            | 11,276 <sup>3</sup> | 350             | 1,608                               | 3.5                                      | 390.7                                                   | 390.7               | 391.3            | 0.6      |
| O                            | 11,810 <sup>3</sup> | 142             | 637                                 | 8.9                                      | 392.1                                                   | 392.1               | 392.1            | 0.0      |
| P                            | 12,890 <sup>3</sup> | 191             | 1,118                               | 5.1                                      | 397.3                                                   | 397.3               | 398.1            | 0.8      |

<sup>1</sup>Feet above confluence with Lehigh River

<sup>2</sup>Elevation computed without consideration of backwater effects from Lehigh River

<sup>3</sup>Feet above Limit of Detailed Study; LODS approximately 1,437 ft downstream of Legislative Route 48061

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

## FLOODWAY DATA

HOKENDAUQUA CREEK REACH 1 –  
HOKENDAUQUA CREEK REACH 2

| FLOODING SOURCE                          |                     | FLOODWAY        |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                  |          |
|------------------------------------------|---------------------|-----------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|------------------|----------|
| CROSS SECTION                            | DISTANCE            | WIDTH<br>(FEET) | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY | INCREASE |
| Hokendauqua Creek<br>Reach 2 (continued) |                     |                 |                                     |                                          |                                                         |                     |                  |          |
| Q                                        | 13,880 <sup>1</sup> | 217             | 1,185                               | 4.8                                      | 400.0                                                   | 400.0               | 400.6            | 0.6      |
| R                                        | 14,800 <sup>1</sup> | 254             | 1,467                               | 3.9                                      | 402.0                                                   | 402.0               | 403.0            | 1.0      |
| S                                        | 15,840 <sup>1</sup> | 293             | 993                                 | 5.7                                      | 405.4                                                   | 405.4               | 406.0            | 0.6      |
| T                                        | 17,110 <sup>1</sup> | 192             | 987                                 | 5.7                                      | 411.6                                                   | 411.6               | 412.2            | 0.6      |
| U                                        | 17,810 <sup>1</sup> | 299             | 1,216                               | 4.6                                      | 413.7                                                   | 413.7               | 414.0            | 0.3      |
| V                                        | 18,450 <sup>1</sup> | 280             | 1,102                               | 5.1                                      | 414.8                                                   | 414.8               | 415.5            | 0.7      |
| W                                        | 18,940 <sup>1</sup> | 192             | 986                                 | 5.7                                      | 416.3                                                   | 416.3               | 417.1            | 0.8      |
| X                                        | 19,660 <sup>1</sup> | 144             | 688                                 | 8.2                                      | 419.2                                                   | 419.2               | 419.7            | 0.5      |
| Hokendauqua Creek<br>Reach 3             |                     |                 |                                     |                                          |                                                         |                     |                  |          |
| A                                        | 220 <sup>2</sup>    | 140             | 725                                 | 5.9                                      | 491.6                                                   | 491.6               | 492.6            | 1.0      |
| B                                        | 500 <sup>2</sup>    | 325             | 1,465                               | 2.9                                      | 498.3                                                   | 498.3               | 498.3            | 0.0      |
| C                                        | 1,110 <sup>2</sup>  | 254             | 1,578                               | 2.7                                      | 498.9                                                   | 498.9               | 499.0            | 0.1      |
| D                                        | 2,160 <sup>2</sup>  | 47              | 298                                 | 14.4                                     | 500.7                                                   | 500.7               | 501.5            | 0.8      |
| E                                        | 3,290 <sup>2</sup>  | 401             | 1,727                               | 2.4                                      | 508.3                                                   | 508.3               | 509.3            | 1.0      |
| F                                        | 4,350 <sup>2</sup>  | 155             | 925                                 | 4.5                                      | 516.0                                                   | 516.0               | 516.2            | 0.2      |
| G                                        | 5,250 <sup>2</sup>  | 121             | 490                                 | 8.5                                      | 524.2                                                   | 524.2               | 524.7            | 0.5      |
| H                                        | 6,030 <sup>2</sup>  | 185             | 754                                 | 5.5                                      | 532.5                                                   | 532.5               | 533.5            | 1.0      |
| I                                        | 7,060 <sup>2</sup>  | 90              | 437                                 | 9.5                                      | 545.6                                                   | 545.6               | 546.2            | 0.6      |
| J                                        | 7,400 <sup>2</sup>  | 240             | 1,721                               | 2.3                                      | 551.1                                                   | 551.1               | 552.0            | 0.9      |
| K                                        | 7,960 <sup>2</sup>  | 159             | 950                                 | 4.1                                      | 551.6                                                   | 551.6               | 552.5            | 0.9      |
| L                                        | 9,250 <sup>2</sup>  | 269             | 1,588                               | 2.2                                      | 563.7                                                   | 563.7               | 564.5            | 0.8      |
| M                                        | 10,300 <sup>2</sup> | 51              | 269                                 | 13.1                                     | 569.3                                                   | 569.3               | 570.1            | 0.8      |
| N                                        | 11,620 <sup>2</sup> | 225             | 851                                 | 4.1                                      | 584.3                                                   | 584.3               | 585.3            | 1.0      |

<sup>1</sup>Feet above Limit of Detailed Study; LODS approximately 1,437 ft downstream of Legislative Route 48061

<sup>2</sup>Feet above Limit of Detailed Study; LODS approximately 380 ft downstream of Pheasant Drive

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

## FLOODWAY DATA

HOKENDAUQUA CREEK REACH 2 –  
HOKENDAUQUA CREEK REACH 3

| FLOODING SOURCE |                       | FLOODWAY        |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                    |          |
|-----------------|-----------------------|-----------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|--------------------|----------|
| CROSS SECTION   | DISTANCE <sup>1</sup> | WIDTH<br>(FEET) | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY   | INCREASE |
| Jacoby Creek    |                       |                 |                                     |                                          |                                                         |                     |                    |          |
|                 | A                     | 416             | 53                                  | 319                                      | 6.0                                                     | 295.6               | 287.1 <sup>2</sup> | 287.1    |
|                 | B                     | 816             | 37                                  | 161                                      | 11.8                                                    | 296.1               | 296.1              | 0.0      |
|                 | C                     | 1,370           | 87                                  | 315                                      | 6.0                                                     | 308.4               | 308.4              | 0.0      |
|                 | D                     | 1,930           | 62                                  | 206                                      | 9.2                                                     | 322.7               | 322.7              | 0.0      |
|                 | E                     | 2,180           | 100                                 | 484                                      | 3.9                                                     | 344.6               | 344.6              | 0.0      |
|                 | F                     | 2,390           | 100                                 | 241                                      | 7.9                                                     | 344.9               | 344.9              | 0.0      |
|                 | G                     | 2,680           | 137                                 | 378                                      | 5.0                                                     | 347.8               | 347.8              | 0.0      |
|                 | H                     | 2,865           | 98                                  | 303                                      | 6.3                                                     | 350.4               | 350.4              | 0.0      |
|                 | I                     | 3,275           | 41                                  | 165                                      | 11.5                                                    | 354.0               | 354.0              | 0.0      |
|                 | J                     | 3,650           | 50                                  | 202                                      | 9.4                                                     | 358.2               | 358.2              | 0.0      |
|                 | K                     | 4,170           | 46                                  | 192                                      | 9.9                                                     | 364.8               | 364.8              | 0.0      |
|                 | L                     | 4,400           | 62                                  | 244                                      | 7.8                                                     | 367.8               | 367.8              | 0.0      |
|                 | M                     | 4,615           | 47                                  | 164                                      | 11.6                                                    | 371.3               | 371.3              | 0.0      |

<sup>1</sup>Feet above confluence with Delaware River

<sup>2</sup>Elevation computed without consideration of backwater effects from Delaware River

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

FLOODWAY DATA

JACOBY CREEK

| FLOODING SOURCE |                       | FLOODWAY        |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                  |          |
|-----------------|-----------------------|-----------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|------------------|----------|
| CROSS SECTION   | DISTANCE <sup>1</sup> | WIDTH<br>(FEET) | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY | INCREASE |
| Lehigh River    |                       |                 |                                     |                                          |                                                         |                     |                  |          |
| A               | 1,584                 | 271             | 6,911                               | 10.0                                     | 191.4                                                   | 184.5 <sup>2</sup>  | 185.2            | 0.7      |
| B               | 2,746                 | 327             | 9,064                               | 7.6                                      | 191.4                                                   | 186.3 <sup>2</sup>  | 186.9            | 0.6      |
| C               | 4,963                 | 439             | 11,434                              | 6.0                                      | 191.4                                                   | 187.5 <sup>2</sup>  | 188.2            | 0.7      |
| D               | 6,125                 | 319             | 7,757                               | 8.9                                      | 191.4                                                   | 187.7 <sup>2</sup>  | 188.4            | 0.7      |
| E               | 9,979                 | 401             | 8,194                               | 8.4                                      | 191.4                                                   | 189.9 <sup>2</sup>  | 190.7            | 0.8      |
| F               | 11,722                | 493             | 7,928                               | 8.7                                      | 191.4                                                   | 190.4 <sup>2</sup>  | 191.2            | 0.8      |
| G               | 12,566                | 319             | 7,629                               | 9.0                                      | 191.4                                                   | 191.3 <sup>2</sup>  | 192.2            | 0.9      |
| H               | 12,778                | 336             | 7,109                               | 9.7                                      | 191.4                                                   | 191.4               | 192.2            | 0.8      |
| I               | 13,728                | 377             | 6,917                               | 10.0                                     | 192.0                                                   | 192.0               | 192.8            | 0.8      |
| J               | 15,946                | 422             | 8,363                               | 8.3                                      | 193.9                                                   | 193.9               | 194.9            | 1.0      |
| K               | 17,213                | 699             | 13,665                              | 5.0                                      | 195.4                                                   | 195.4               | 196.3            | 0.9      |
| L               | 17,794                | 667             | 11,893                              | 5.8                                      | 202.2                                                   | 202.2               | 202.9            | 0.7      |
| M               | 19,166                | 1,332           | 13,29                               | 5.2                                      | 203.0                                                   | 203.0               | 203.7            | 0.7      |
| N               | 20,803                | 1,795           | 17,392                              | 4.0                                      | 204.5                                                   | 204.5               | 204.9            | 0.4      |
| O               | 22,651                | 885             | 11,095                              | 6.2                                      | 205.7                                                   | 205.7               | 206.1            | 0.4      |
| P               | 24,658                | 630             | 10,167                              | 6.8                                      | 207.1                                                   | 207.1               | 207.6            | 0.5      |
| Q               | 25,450                | 488             | 10,630                              | 6.5                                      | 207.7                                                   | 207.7               | 208.2            | 0.5      |
| R               | 27,298                | 825             | 11,797                              | 5.8                                      | 208.7                                                   | 208.7               | 209.2            | 0.5      |
| S               | 30,254                | 602             | 10,303                              | 6.7                                      | 209.8                                                   | 209.8               | 210.2            | 0.4      |
| T               | 34,109                | 467             | 9,465                               | 7.3                                      | 211.6                                                   | 211.6               | 212.3            | 0.7      |
| U               | 35,429                | 477             | 8,360                               | 8.3                                      | 212.0                                                   | 212.0               | 212.6            | 0.6      |
| V               | 37,435                | 584             | 9,717                               | 7.1                                      | 213.4                                                   | 213.4               | 214.1            | 0.7      |
| W               | 40,973                | 418             | 9,214                               | 7.5                                      | 215.7                                                   | 215.7               | 216.5            | 0.8      |
| X               | 43,877                | 355             | 6,211                               | 11.1                                     | 216.3                                                   | 216.3               | 217.2            | 0.9      |
| Y               | 44,774                | 509             | 9,081                               | 7.6                                      | 219.2                                                   | 219.2               | 219.7            | 0.5      |
| Z               | 46,611                | 849             | 13,140                              | 5.3                                      | 221.3                                                   | 221.3               | 221.9            | 0.6      |
| AA              | 49,157                | 278             | 7,755                               | 8.9                                      | 222.0                                                   | 222.0               | 222.8            | 0.8      |
| AB              | 51,322                | 392             | 7,668                               | 9.0                                      | 223.1                                                   | 223.1               | 224.1            | 1.0      |

<sup>1</sup>Feet above confluence with Delaware River

<sup>2</sup>Elevation computed without consideration of backwater effects from Delaware River

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

FLOODWAY DATA

LEHIGH RIVER

| FLOODING SOURCE             |                       | FLOODWAY         |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                  |          |
|-----------------------------|-----------------------|------------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|------------------|----------|
| CROSS SECTION               | DISTANCE <sup>1</sup> | WIDTH<br>(FEET)  | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY | INCREASE |
| Lehigh River<br>(continued) |                       |                  |                                     |                                          |                                                         |                     |                  |          |
| AC                          | 54,542                | 385              | 8,634                               | 8.0                                      | 225.5                                                   | 225.5               | 226.4            | 0.9      |
| AD                          | 56,918                | 286              | 6,236                               | 11.0                                     | 226.2                                                   | 226.2               | 227.1            | 0.9      |
| AE                          | 58,450                | 292              | 6,224                               | 11.0                                     | 227.9                                                   | 227.9               | 228.8            | 0.9      |
| AF                          | 61,406                | 247              | 5,298                               | 12.8                                     | 229.7                                                   | 229.7               | 230.6            | 0.9      |
| AG                          | 62,832                | 322              | 7,393                               | 9.2                                      | 232.3                                                   | 232.3               | 233.2            | 0.9      |
| AH                          | 64,944                | 348              | 7,564                               | 9.0                                      | 234.3                                                   | 234.3               | 235.1            | 0.8      |
| AI                          | 66,634                | 449 <sup>2</sup> | 10,195                              | 6.7                                      | 235.6                                                   | 235.6               | 236.4            | 0.8      |
| AJ                          | 71,016                | 398 <sup>2</sup> | 8,107                               | 8.4                                      | 237.6                                                   | 237.6               | 238.4            | 0.8      |
| AK                          | 72,758                | 407 <sup>2</sup> | 8,169                               | 8.3                                      | 239.1                                                   | 239.1               | 239.8            | 0.7      |
| AL                          | 112,675               | 314 <sup>2</sup> | 5,101                               | 13.0                                     | 281.3                                                   | 281.3               | 282.0            | 0.7      |
| AM                          | 116,899               | 323 <sup>2</sup> | 6,754                               | 9.8                                      | 287.1                                                   | 287.1               | 287.9            | 0.8      |
| AN                          | 118,325               | 322 <sup>2</sup> | 6,117                               | 10.8                                     | 288.2                                                   | 288.2               | 289.2            | 1.0      |
| AO                          | 118,694               | 338 <sup>2</sup> | 7,603                               | 8.6                                      | 291.0                                                   | 291.0               | 291.8            | 0.8      |
| AP                          | 121,704               | 522 <sup>2</sup> | 8,142                               | 8.1                                      | 293.0                                                   | 293.0               | 293.9            | 0.9      |
| AQ                          | 124,396               | 346 <sup>2</sup> | 6,240                               | 10.5                                     | 294.2                                                   | 294.2               | 295.2            | 1.0      |
| AR                          | 125,453               | 323 <sup>2</sup> | 5,861                               | 11.2                                     | 295.0                                                   | 295.0               | 295.8            | 0.8      |
| AS                          | 127,459               | 440 <sup>2</sup> | 7,773                               | 8.5                                      | 301.1                                                   | 301.1               | 301.8            | 0.7      |
| AT                          | 131,314               | 419 <sup>2</sup> | 6,542                               | 10.0                                     | 302.5                                                   | 302.5               | 303.5            | 1.0      |
| AU                          | 134,165               | 397 <sup>2</sup> | 6,574                               | 10.0                                     | 305.4                                                   | 305.4               | 306.2            | 0.8      |
| AV                          | 136,752               | 565 <sup>2</sup> | 5,709                               | 11.5                                     | 308.9                                                   | 308.9               | 309.2            | 0.3      |
| AW                          | 140,290               | 377 <sup>2</sup> | 5,237                               | 12.5                                     | 316.0                                                   | 316.0               | 316.0            | 0.0      |
| AX                          | 144,830               | 287 <sup>2</sup> | 5,073                               | 13.0                                     | 321.2                                                   | 321.2               | 322.1            | 0.9      |
| AY                          | 148,474               | 249 <sup>2</sup> | 4,745                               | 13.8                                     | 328.3                                                   | 328.3               | 328.3            | 0.0      |
| AZ                          | 150,374               | 343 <sup>2</sup> | 7,020                               | 9.4                                      | 332.2                                                   | 332.2               | 333.1            | 0.9      |
| BA                          | 153,754               | 462 <sup>2</sup> | 7,956                               | 8.3                                      | 340.5                                                   | 340.5               | 341.2            | 0.7      |
| BB                          | 156,077               | 336 <sup>2</sup> | 5,831                               | 11.3                                     | 342.1                                                   | 342.1               | 343.0            | 0.9      |
| BC                          | 158,875               | 590 <sup>2</sup> | 12,715                              | 5.2                                      | 345.4                                                   | 345.4               | 346.2            | 0.8      |

<sup>1</sup>Feet above confluence with Delaware River

<sup>2</sup>Width extends beyond county boundary

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

FLOODWAY DATA

LEHIGH RIVER

| FLOODING SOURCE             |                       | FLOODWAY                     |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                  |          |
|-----------------------------|-----------------------|------------------------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|------------------|----------|
| CROSS SECTION               | DISTANCE <sup>1</sup> | WIDTH <sup>2</sup><br>(FEET) | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY | INCREASE |
| Lehigh River<br>(continued) |                       |                              |                                     |                                          |                                                         |                     |                  |          |
| BD                          | 162,307               | 387                          | 7,127                               | 9.2                                      | 346.1                                                   | 346.1               | 346.8            | 0.7      |
| BE                          | 164,525               | 384                          | 6,867                               | 9.6                                      | 348.5                                                   | 348.5               | 349.2            | 0.7      |
| BF                          | 166,690               | 299                          | 5,291                               | 12.4                                     | 350.2                                                   | 350.2               | 351.0            | 0.8      |
| BG                          | 169,171               | 215                          | 4,781                               | 13.7                                     | 353.0                                                   | 353.0               | 354.0            | 1.0      |
| BH                          | 172,339               | 337                          | 7,055                               | 9.3                                      | 357.5                                                   | 357.5               | 358.2            | 0.7      |
| BI                          | 174,926               | 425                          | 6,901                               | 9.5                                      | 359.7                                                   | 359.7               | 360.7            | 1.0      |
| BJ                          | 177,778               | 381                          | 5,537                               | 11.6                                     | 363.7                                                   | 363.7               | 364.6            | 0.9      |
| BK                          | 181,104               | 253                          | 4,432                               | 14.4                                     | 368.4                                                   | 368.4               | 368.9            | 0.5      |
| BL                          | 183,533               | 346                          | 5,774                               | 11.1                                     | 375.0                                                   | 375.0               | 376.0            | 1.0      |
| BM                          | 185,539               | 700                          | 9,171                               | 7.0                                      | 379.9                                                   | 379.9               | 380.8            | 0.9      |
| BN                          | 188,232               | 381                          | 4,749                               | 13.5                                     | 382.8                                                   | 382.8               | 383.4            | 0.6      |
| BO                          | 189,816               | 389                          | 7,375                               | 8.7                                      | 387.0                                                   | 387.0               | 387.6            | 0.6      |

<sup>1</sup>Miles above confluence with Delaware River

<sup>2</sup>Width extends beyond county boundary

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

FLOODWAY DATA

LEHIGH RIVER

| FLOODING SOURCE       |                     | FLOODWAY        |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                  |          |
|-----------------------|---------------------|-----------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|------------------|----------|
| CROSS SECTION         | DISTANCE            | WIDTH<br>(FEET) | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY | INCREASE |
| Little Bushkill Creek |                     |                 |                                     |                                          |                                                         |                     |                  |          |
| A                     | 693 <sup>1</sup>    | 168             | 498                                 | 6.1                                      | 388.8                                                   | 388.8               | 388.9            | 0.1      |
| B                     | 1,510 <sup>1</sup>  | 77              | 452                                 | 6.7                                      | 392.6                                                   | 392.6               | 393.3            | 0.7      |
| C                     | 2,393 <sup>1</sup>  | 66              | 409                                 | 7.4                                      | 395.2                                                   | 395.2               | 396.0            | 0.8      |
| D                     | 3,173 <sup>1</sup>  | 90              | 541                                 | 5.6                                      | 398.2                                                   | 398.2               | 399.1            | 0.9      |
| E                     | 3,723 <sup>1</sup>  | 144             | 606                                 | 5.0                                      | 400.1                                                   | 400.1               | 400.9            | 0.8      |
| F                     | 5,093 <sup>1</sup>  | 109             | 597                                 | 5.1                                      | 404.2                                                   | 404.2               | 405.0            | 0.8      |
| G                     | 5,870 <sup>1</sup>  | 157             | 517                                 | 5.7                                      | 406.3                                                   | 406.3               | 407.0            | 0.7      |
| H                     | 6,832 <sup>1</sup>  | 95              | 437                                 | 6.7                                      | 411.1                                                   | 411.1               | 412.0            | 0.9      |
| I                     | 7,652 <sup>1</sup>  | 66              | 381                                 | 7.7                                      | 415.7                                                   | 415.7               | 416.5            | 0.8      |
| J                     | 9,132 <sup>1</sup>  | 126             | 546                                 | 5.4                                      | 422.6                                                   | 422.6               | 423.5            | 0.9      |
| K                     | 9,802 <sup>1</sup>  | 67              | 368                                 | 7.7                                      | 425.8                                                   | 425.8               | 426.5            | 0.7      |
| L                     | 10,258 <sup>1</sup> | 48              | 303                                 | 8.7                                      | 428.6                                                   | 428.6               | 429.2            | 0.6      |
| M                     | 10,716 <sup>1</sup> | 128             | 556                                 | 4.7                                      | 431.6                                                   | 431.6               | 431.9            | 0.3      |
| N                     | 11,266 <sup>1</sup> | 49              | 283                                 | 9.3                                      | 433.1                                                   | 433.1               | 434.0            | 0.9      |
| O                     | 12,981 <sup>1</sup> | 48              | 325                                 | 8.1                                      | 442.2                                                   | 442.2               | 443.0            | 0.8      |
| P                     | 13,732 <sup>1</sup> | 142             | 669                                 | 3.9                                      | 448.1                                                   | 448.1               | 448.6            | 0.5      |
| Little Martins Creek  |                     |                 |                                     |                                          |                                                         |                     |                  |          |
| A                     | 121 <sup>2</sup>    | 160             | 1,233                               | 2.0                                      | 244.8                                                   | 244.8               | 245.4            | 0.6      |
| B                     | 517 <sup>2</sup>    | 73              | 381                                 | 6.4                                      | 244.9                                                   | 244.9               | 245.2            | 0.3      |
| C                     | 1,278 <sup>2</sup>  | 92              | 394                                 | 6.2                                      | 250.7                                                   | 250.7               | 251.3            | 0.6      |
| D                     | 1,927 <sup>2</sup>  | 46              | 217                                 | 11.1                                     | 257.4                                                   | 257.4               | 257.4            | 0.0      |
| E                     | 2,471 <sup>2</sup>  | 38              | 184                                 | 13.2                                     | 262.4                                                   | 262.4               | 262.4            | 0.0      |
| F                     | 3,120 <sup>2</sup>  | 68              | 348                                 | 7.0                                      | 270.8                                                   | 270.8               | 270.9            | 0.1      |
| G                     | 3,907 <sup>2</sup>  | 77              | 339                                 | 7.2                                      | 278.4                                                   | 278.4               | 279.0            | 0.6      |

<sup>1</sup>Feet above Private Road No. 1

<sup>2</sup>Feet above confluence with Martins Creek Reach 1

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

FLOODWAY DATA

LITTLE BUSHKILL CREEK – LITTLE MARTINS CREEK

| FLOODING SOURCE       |                     | FLOODWAY        |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                  |          |
|-----------------------|---------------------|-----------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|------------------|----------|
| CROSS SECTION         | DISTANCE            | WIDTH<br>(FEET) | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY | INCREASE |
| Martins Creek Reach 1 |                     |                 |                                     |                                          |                                                         |                     |                  |          |
| A                     | 438 <sup>1</sup>    | 155             | 2,470                               | 4.0                                      | 216.2                                                   | 203.4 <sup>3</sup>  | 204.4            | 1.0      |
| B                     | 1,278 <sup>1</sup>  | 120             | 1,682                               | 5.8                                      | 216.2                                                   | 211.2 <sup>3</sup>  | 211.2            | 0.0      |
| C                     | 2,223 <sup>1</sup>  | 105             | 808                                 | 12.2                                     | 216.2                                                   | 212.6 <sup>3</sup>  | 213.5            | 0.9      |
| D                     | 2,793 <sup>1</sup>  | 202             | 1,059                               | 9.3                                      | 217.9                                                   | 217.9               | 217.9            | 0.0      |
| E                     | 3,416 <sup>1</sup>  | 190             | 1,384                               | 7.1                                      | 221.6                                                   | 221.6               | 221.7            | 0.1      |
| F                     | 4,235 <sup>1</sup>  | 170             | 987                                 | 10.0                                     | 228.4                                                   | 228.4               | 228.4            | 0.0      |
| G                     | 4,852 <sup>1</sup>  | 155             | 887                                 | 11.1                                     | 233.0                                                   | 233.0               | 233.5            | 0.5      |
| H                     | 5,217 <sup>1</sup>  | 160             | 1,486                               | 6.6                                      | 239.2                                                   | 239.2               | 239.2            | 0.0      |
| I                     | 6,246 <sup>1</sup>  | 120             | 907                                 | 10.8                                     | 242.2                                                   | 242.2               | 242.8            | 0.6      |
| J                     | 7,767 <sup>1</sup>  | 156             | 802                                 | 10.8                                     | 251.0                                                   | 251.0               | 251.2            | 0.2      |
| K                     | 8,786 <sup>1</sup>  | 122             | 836                                 | 10.3                                     | 261.0                                                   | 261.0               | 261.4            | 0.4      |
| L                     | 9,884 <sup>1</sup>  | 112             | 786                                 | 11.0                                     | 268.0                                                   | 268.0               | 268.0            | 0.0      |
| M                     | 10,439 <sup>1</sup> | 130             | 802                                 | 10.8                                     | 271.6                                                   | 271.6               | 271.6            | 0.0      |
| N                     | 10,898 <sup>1</sup> | 111             | 851                                 | 10.1                                     | 277.9                                                   | 277.9               | 278.9            | 1.0      |
| Martins Creek Reach 2 |                     |                 |                                     |                                          |                                                         |                     |                  |          |
| A-H*                  |                     |                 |                                     |                                          |                                                         |                     |                  |          |
| I                     | 11,448 <sup>2</sup> | 110             | 497                                 | 10.6                                     | 474.4                                                   | 474.4               | 474.8            | 0.4      |
| J                     | 14,484 <sup>2</sup> | 100             | 797                                 | 5.2                                      | 513.5                                                   | 513.5               | 514.2            | 0.7      |
| K                     | 14,886 <sup>2</sup> | 150             | 1,155                               | 3.6                                      | 520.3                                                   | 520.3               | 521.3            | 1.0      |
| L                     | 17,698 <sup>2</sup> | 80              | 395                                 | 10.6                                     | 553.9                                                   | 553.9               | 554.1            | 0.2      |
| M                     | 22,446 <sup>2</sup> | 149             | 477                                 | 8.8                                      | 614.6                                                   | 614.6               | 614.7            | 0.1      |
| N                     | 22,894 <sup>2</sup> | 78              | 358                                 | 11.7                                     | 621.2                                                   | 621.2               | 621.2            | 0.0      |
| O                     | 23,364 <sup>2</sup> | 140             | 768                                 | 5.5                                      | 627.1                                                   | 627.1               | 627.6            | 0.5      |

<sup>1</sup>Feet above confluence with Delaware River

<sup>2</sup>Feet above Limit of Detailed Study (Limit of Detailed Study is located approximately 100 feet below State Route 680)

<sup>3</sup>Elevation computed without consideration of backwater effects from Delaware River

\*No floodway computed

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

FLOODWAY DATA

MARTINS CREEK REACH 1 – MARTINS CREEK  
REACH 2

| FLOODING SOURCE                      |                     | FLOODWAY        |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                  |          |
|--------------------------------------|---------------------|-----------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|------------------|----------|
| CROSS SECTION                        | DISTANCE            | WIDTH<br>(FEET) | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY | INCREASE |
| Martins Creek Reach 2<br>(continued) |                     |                 |                                     |                                          |                                                         |                     |                  |          |
| P                                    | 23,824 <sup>1</sup> | 108             | 452                                 | 9.3                                      | 632.2                                                   | 632.2               | 632.5            | 0.3      |
| Q                                    | 24,422 <sup>1</sup> | 90              | 544                                 | 7.7                                      | 638.9                                                   | 638.9               | 639.8            | 0.9      |
| R                                    | 25,083 <sup>1</sup> | 148             | 455                                 | 9.2                                      | 645.8                                                   | 645.8               | 645.8            | 0.0      |
| S                                    | 25,742 <sup>1</sup> | 140             | 705                                 | 6.0                                      | 653.6                                                   | 653.6               | 654.2            | 0.6      |
| T                                    | 26,446 <sup>1</sup> | 120             | 607                                 | 6.9                                      | 660.1                                                   | 660.1               | 660.5            | 0.4      |
| U                                    | 27,182 <sup>1</sup> | 260             | 981                                 | 4.3                                      | 665.5                                                   | 665.5               | 666.4            | 0.9      |
| Monocacy Creek<br>Reach 1            |                     |                 |                                     |                                          |                                                         |                     |                  |          |
| A                                    | 2,480 <sup>2</sup>  | 692             | 5,465                               | 0.7                                      | 236.1                                                   | 236.1               | 236.9            | 0.8      |
| B                                    | 3,385 <sup>2</sup>  | 403             | 2,451                               | 1.5                                      | 236.3                                                   | 236.3               | 237.0            | 0.7      |
| C                                    | 4,080 <sup>2</sup>  | 433             | 5,252                               | 0.7                                      | 236.6                                                   | 236.6               | 237.3            | 0.7      |
| D                                    | 4,200 <sup>2</sup>  | 377             | 3,509                               | 1.1                                      | 236.7                                                   | 236.7               | 237.4            | 0.7      |
| E                                    | 4,570 <sup>2</sup>  | 237             | 2,596                               | 1.4                                      | 236.8                                                   | 236.8               | 237.5            | 0.7      |
| F                                    | 4,720 <sup>2</sup>  | 179             | 2,323                               | 1.6                                      | 237.1                                                   | 237.1               | 237.5            | 0.4      |
| G                                    | 5,670 <sup>2</sup>  | 128             | 996                                 | 3.8                                      | 237.4                                                   | 237.4               | 238.1            | 0.7      |
| H                                    | 5,920 <sup>2</sup>  | 225             | 1,238                               | 3.0                                      | 237.7                                                   | 237.7               | 238.4            | 0.7      |
| I                                    | 6,180 <sup>2</sup>  | 143             | 1,412                               | 2.7                                      | 238.5                                                   | 238.5               | 239.2            | 0.7      |
| J                                    | 8,070 <sup>2</sup>  | 184             | 1,023                               | 3.7                                      | 240.5                                                   | 240.5               | 241.2            | 0.7      |
| K                                    | 8,510 <sup>2</sup>  | 324             | 2,236                               | 1.7                                      | 241.7                                                   | 241.7               | 242.5            | 0.8      |
| L                                    | 9,530 <sup>2</sup>  | 61              | 752                                 | 4.7                                      | 243.1                                                   | 243.1               | 243.8            | 0.7      |
| M                                    | 12,365 <sup>2</sup> | 90              | 623                                 | 5.7                                      | 253.5                                                   | 253.5               | 253.8            | 0.3      |
| N                                    | 13,765 <sup>2</sup> | 83              | 593                                 | 6.0                                      | 255.5                                                   | 255.5               | 255.8            | 0.3      |
| O                                    | 13,950 <sup>2</sup> | 89              | 519                                 | 6.8                                      | 255.9                                                   | 255.9               | 256.5            | 0.6      |
| P                                    | 15,075 <sup>2</sup> | 85              | 506                                 | 7.0                                      | 259.2                                                   | 259.2               | 259.2            | 0.0      |
| Q                                    | 15,195 <sup>2</sup> | 89              | 326                                 | 10.9                                     | 263.6                                                   | 263.6               | 263.6            | 0.0      |

<sup>1</sup>Feet above Limit of Detailed Study (Limit of Detailed Study is located approximately 100 feet below State Route 680)

<sup>2</sup>Feet above confluence with Lehigh River

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

## FLOODWAY DATA

MARTINS CREEK REACH 2 – MONOCACY CREEK  
REACH 1

| FLOODING SOURCE                       |                       | FLOODWAY        |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                  |          |
|---------------------------------------|-----------------------|-----------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|------------------|----------|
| CROSS SECTION                         | DISTANCE <sup>1</sup> | WIDTH<br>(FEET) | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY | INCREASE |
| Monocacy Creek<br>Reach 1 (continued) |                       |                 |                                     |                                          |                                                         |                     |                  |          |
| R                                     | 16,395                | 104             | 607                                 | 5.8                                      | 268.4                                                   | 268.4               | 268.9            | 0.5      |
| S                                     | 16,575                | 121             | 889                                 | 4.0                                      | 269.4                                                   | 269.4               | 270.2            | 0.8      |
| T                                     | 17,345                | 88              | 509                                 | 7.0                                      | 270.5                                                   | 270.5               | 271.0            | 0.5      |
| U                                     | 20,455                | 88              | 492                                 | 7.1                                      | 279.3                                                   | 279.3               | 279.6            | 0.3      |
| V                                     | 20,720                | 78              | 550                                 | 6.4                                      | 280.2                                                   | 280.2               | 280.7            | 0.5      |
| W                                     | 22,005                | 108             | 700                                 | 5.0                                      | 284.3                                                   | 284.3               | 284.5            | 0.2      |
| X                                     | 22,240                | 100             | 903                                 | 3.9                                      | 284.6                                                   | 284.6               | 285.0            | 0.4      |
| Y                                     | 23,205                | 87              | 629                                 | 5.6                                      | 285.5                                                   | 285.5               | 285.9            | 0.4      |
| Z                                     | 23,555                | 160             | 1,375                               | 2.5                                      | 290.4                                                   | 290.4               | 290.4            | 0.0      |
| AA                                    | 23,725                | 153             | 1,412                               | 2.5                                      | 290.5                                                   | 290.5               | 290.5            | 0.0      |
| AB                                    | 24,935                | 234             | 1,362                               | 2.6                                      | 290.8                                                   | 290.8               | 290.9            | 0.1      |
| AC                                    | 25,060                | 188             | 1,392                               | 2.4                                      | 290.9                                                   | 290.9               | 291.5            | 0.6      |
| AD                                    | 26,765                | 72              | 293                                 | 11.6                                     | 295.6                                                   | 295.6               | 295.6            | 0.0      |
| AE                                    | 28,865                | 170             | 1,130                               | 2.8                                      | 300.9                                                   | 300.9               | 301.5            | 0.6      |
| AF                                    | 29,625                | 144             | 1,064                               | 3.0                                      | 301.5                                                   | 301.5               | 302.1            | 0.6      |
| AG                                    | 30,160                | 47              | 229                                 | 14.0                                     | 301.5                                                   | 301.5               | 302.1            | 0.6      |
| AH                                    | 30,345                | 374             | 1,925                               | 1.7                                      | 303.7                                                   | 303.7               | 303.8            | 0.1      |
| AI                                    | 31,625                | 250             | 2,279                               | 1.4                                      | 304.5                                                   | 304.5               | 304.8            | 0.3      |
| AJ                                    | 31,885                | 190             | 1,326                               | 2.4                                      | 304.5                                                   | 304.5               | 304.8            | 0.3      |
| AK                                    | 32,120                | 97              | 1,392                               | 2.3                                      | 304.8                                                   | 304.8               | 305.2            | 0.4      |
| AL                                    | 32,975                | 173             | 830                                 | 3.9                                      | 305.4                                                   | 305.4               | 305.9            | 0.5      |
| AM                                    | 33,130                | 380             | 2,524                               | 1.3                                      | 305.4                                                   | 305.4               | 305.9            | 0.5      |
| AN                                    | 33,715                | 240             | 973                                 | 3.3                                      | 305.9                                                   | 305.9               | 306.5            | 0.6      |
| AO                                    | 34,035                | 710             | 2,631                               | 1.2                                      | 306.9                                                   | 306.9               | 307.1            | 0.2      |

<sup>1</sup>Feet above confluence with Lehigh River

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

FLOODWAY DATA

MONOCACY CREEK REACH 1

| FLOODING SOURCE                       |                       | FLOODWAY        |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                  |          |
|---------------------------------------|-----------------------|-----------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|------------------|----------|
| CROSS SECTION                         | DISTANCE <sup>1</sup> | WIDTH<br>(FEET) | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY | INCREASE |
| Monocacy Creek<br>Reach 1 (continued) |                       |                 |                                     |                                          |                                                         |                     |                  |          |
| AP                                    | 35,780                | 131             | 764                                 | 4.2                                      | 309.5                                                   | 309.5               | 310.3            | 0.8      |
| AQ                                    | 37,169                | 208             | 1,694                               | 1.9                                      | 315.2                                                   | 315.2               | 316.0            | 0.8      |
| AR                                    | 37,919                | 361             | 2,582                               | 1.2                                      | 315.7                                                   | 315.7               | 316.6            | 0.9      |
| AS                                    | 38,989                | 233             | 2,192                               | 1.5                                      | 316.4                                                   | 316.4               | 317.3            | 0.9      |
| AT                                    | 40,015                | 150             | 1,223                               | 2.4                                      | 317.2                                                   | 317.2               | 318.2            | 1.0      |
| AU                                    | 40,945                | 116             | 744                                 | 3.9                                      | 317.8                                                   | 317.8               | 318.7            | 0.9      |
| AV                                    | 42,018                | 126             | 798                                 | 3.7                                      | 318.6                                                   | 318.6               | 319.4            | 0.8      |
| AW                                    | 42,824                | 89              | 643                                 | 4.6                                      | 319.7                                                   | 319.7               | 320.6            | 0.9      |
| Nancy Run                             |                       |                 |                                     |                                          |                                                         |                     |                  |          |
| A                                     | 259                   | 42              | 373                                 | 11.5                                     | 221.0                                                   | 212.2 <sup>2</sup>  | 213.0            | 0.8      |
| B                                     | 495                   | 132             | 1084                                | 4.0                                      | 221.0                                                   | 220.1 <sup>2</sup>  | 220.4            | 0.3      |
| C                                     | 1,138                 | 58              | 590                                 | 7.1                                      | 228.9                                                   | 228.9               | 229.0            | 0.1      |
| D                                     | 1,339                 | 53              | 405                                 | 10.2                                     | 230.2                                                   | 230.2               | 230.9            | 0.7      |
| E                                     | 1,943                 | 30              | 255                                 | 16.3                                     | 239.1                                                   | 239.1               | 239.2            | 0.1      |
| F                                     | 2,130                 | 26              | 307                                 | 13.5                                     | 243.5                                                   | 243.5               | 243.5            | 0.0      |
| G                                     | 3,262                 | 98              | 635                                 | 6.1                                      | 257.5                                                   | 257.5               | 258.2            | 0.7      |
| H                                     | 3,540                 | 115             | 541                                 | 7.2                                      | 258.3                                                   | 258.3               | 259.2            | 0.9      |
| I                                     | 3,887                 | 74              | 446                                 | 8.8                                      | 261.2                                                   | 261.2               | 261.2            | 0.0      |
| J                                     | 4,340                 | 115             | 706                                 | 5.5                                      | 265.5                                                   | 265.5               | 266.1            | 0.6      |
| K                                     | 4,870                 | 95              | 530                                 | 7.3                                      | 266.8                                                   | 266.8               | 267.7            | 0.9      |
| L                                     | 5,109                 | 84              | 543                                 | 7.2                                      | 269.4                                                   | 269.4               | 270.1            | 0.7      |
| M                                     | 5,463                 | 151             | 858                                 | 4.5                                      | 271.7                                                   | 271.7               | 272.5            | 0.8      |
| N                                     | 5,761                 | 150             | 705                                 | 4.7                                      | 275.8                                                   | 275.8               | 276.2            | 0.4      |
| O                                     | 6,261                 | 204             | 877                                 | 3.8                                      | 277.7                                                   | 277.7               | 278.5            | 0.8      |
| P                                     | 7,047                 | 77              | 331                                 | 10.0                                     | 282.7                                                   | 282.7               | 283.5            | 0.8      |
| Q                                     | 7,780                 | 90              | 471                                 | 7.0                                      | 294.6                                                   | 294.6               | 295.1            | 0.5      |

<sup>1</sup>Feet above confluence with Lehigh River

<sup>2</sup>Elevation computed without consideration of backwater effects from Lehigh River

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

FLOODWAY DATA

MONOCACY CREEK REACH 1 – NANCY RUN

| FLOODING SOURCE          |                       | FLOODWAY        |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                    |          |     |
|--------------------------|-----------------------|-----------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|--------------------|----------|-----|
| CROSS SECTION            | DISTANCE <sup>1</sup> | WIDTH<br>(FEET) | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY   | INCREASE |     |
| Nancy Run<br>(continued) | R                     | 9,059           | 127                                 | 370                                      | 5.9                                                     | 298.0               | 298.0              | 298.2    | 0.2 |
|                          | S                     | 9,466           | 70                                  | 268                                      | 8.2                                                     | 303.8               | 303.8              | 304.5    | 0.7 |
|                          | T                     | 10,044          | 52                                  | 224                                      | 9.7                                                     | 309.0               | 309.0              | 309.2    | 0.2 |
|                          | U                     | 10,345          | 142                                 | 1,105                                    | 2.0                                                     | 316.6               | 316.6              | 316.8    | 0.2 |
|                          | V                     | 10,748          | 130                                 | 709                                      | 3.1                                                     | 316.9               | 316.9              | 317.1    | 0.2 |
|                          | W                     | 11,044          | 152                                 | 721                                      | 3.0                                                     | 320.1               | 320.1              | 320.3    | 0.2 |
|                          | X                     | 11,991          | 77                                  | 292                                      | 6.6                                                     | 322.6               | 322.6              | 323.2    | 0.6 |
|                          | Y                     | 12,138          | 83                                  | 613                                      | 3.2                                                     | 328.4               | 328.4              | 328.4    | 0.0 |
|                          | Z                     | 13,652          | 86                                  | 362                                      | 5.3                                                     | 331.1               | 331.1              | 331.5    | 0.4 |
|                          | AA                    | 14,427          | 144                                 | 725                                      | 2.7                                                     | 336.6               | 336.6              | 336.6    | 0.0 |
|                          | AB                    | 15,510          | 168                                 | 666                                      | 2.9                                                     | 341.0               | 341.0              | 341.2    | 0.2 |
|                          | AC                    | 16,070          | 81                                  | 176                                      | 7.0                                                     | 342.8               | 342.8              | 343.1    | 0.3 |
|                          | AD                    | 17,662          | 90                                  | 259                                      | 4.7                                                     | 358.7               | 358.7              | 359.4    | 0.7 |
|                          | Saucon Creek          |                 |                                     |                                          |                                                         |                     |                    |          |     |
|                          | A                     | 296             | 118                                 | 1,576                                    | 6.9                                                     | 223.2               | 216.5 <sup>2</sup> | 217.3    | 0.8 |
|                          | B                     | 1,267           | 140                                 | 1,771                                    | 6.2                                                     | 223.2               | 218.9 <sup>2</sup> | 219.7    | 0.8 |
|                          | C                     | 2,497           | 40                                  | 497                                      | 18.9                                                    | 223.2               | 221.7 <sup>2</sup> | 221.9    | 0.2 |
|                          | D                     | 3,316           | 47                                  | 868                                      | 10.8                                                    | 228.6               | 228.6              | 229.4    | 0.8 |
|                          | E                     | 3,759           | 48                                  | 643                                      | 14.6                                                    | 228.6               | 228.6              | 229.4    | 0.8 |
|                          | F                     | 5,059           | 91                                  | 2,057                                    | 4.6                                                     | 239.9               | 239.9              | 240.0    | 0.1 |
|                          | G                     | 5,771           | 139                                 | 2,609                                    | 3.6                                                     | 240.1               | 240.1              | 240.3    | 0.2 |
|                          | H                     | 7,056           | 254                                 | 3,573                                    | 2.6                                                     | 240.7               | 240.7              | 241.5    | 0.8 |
|                          | I                     | 7,776           | 178                                 | 1,961                                    | 4.8                                                     | 241.6               | 241.6              | 241.8    | 0.2 |
|                          | J                     | 9,285           | 359                                 | 2,631                                    | 3.6                                                     | 242.2               | 242.2              | 243.0    | 0.8 |
|                          | K                     | 11,195          | 338                                 | 1,871                                    | 5.0                                                     | 243.4               | 243.4              | 244.1    | 0.7 |

<sup>1</sup>Feet above confluence with Lehigh River

<sup>2</sup>Elevation computed without consideration of backwater effects from Lehigh River

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

FLOODWAY DATA

NANCY RUN – SAUCON CREEK

| FLOODING SOURCE             |                       | FLOODWAY        |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                  |          |
|-----------------------------|-----------------------|-----------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|------------------|----------|
| CROSS SECTION               | DISTANCE <sup>1</sup> | WIDTH<br>(FEET) | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY | INCREASE |
| Saucon Creek<br>(continued) |                       |                 |                                     |                                          |                                                         |                     |                  |          |
| L                           | 12,239                | 372             | 1,475                               | 6.4                                      | 246.5                                                   | 246.5               | 247.1            | 0.6      |
| M                           | 14,270                | 192             | 1,761                               | 5.3                                      | 254.1                                                   | 254.1               | 254.6            | 0.5      |
| N                           | 15,503                | 266             | 1,972                               | 4.8                                      | 257.1                                                   | 257.1               | 257.6            | 0.5      |
| O                           | 16,340                | 64              | 635                                 | 14.8                                     | 259.4                                                   | 259.4               | 260.4            | 1.0      |
| P                           | 17,506                | 337             | 3,754                               | 2.5                                      | 268.8                                                   | 268.8               | 269.6            | 0.8      |
| Q                           | 18,824                | 556             | 2,835                               | 3.3                                      | 269.6                                                   | 269.6               | 270.4            | 0.8      |
| R                           | 20,545                | 236             | 1,324                               | 6.3                                      | 274.2                                                   | 274.2               | 275.2            | 1.0      |
| S                           | 21,067                | 232             | 2,086                               | 3.8                                      | 277.5                                                   | 277.5               | 278.1            | 0.6      |
| T                           | 22,412                | 328             | 1,505                               | 5.3                                      | 279.6                                                   | 279.6               | 280.2            | 0.6      |
| U                           | 23,332                | 372             | 2,487                               | 3.2                                      | 286.4                                                   | 286.4               | 287.4            | 1.0      |
| V                           | 24,667                | 263             | 1,290                               | 6.1                                      | 290.5                                                   | 290.5               | 290.7            | 0.2      |
| W                           | 25,731                | 270             | 1,531                               | 5.2                                      | 295.2                                                   | 295.2               | 295.8            | 0.6      |
| X                           | 26,742                | 360             | 1,899                               | 4.2                                      | 298.9                                                   | 298.9               | 299.2            | 0.3      |
| Y                           | 27,976                | 106             | 955                                 | 8.3                                      | 302.6                                                   | 302.6               | 303.5            | 0.9      |
| Z                           | 28,586                | 160             | 855                                 | 9.3                                      | 306.0                                                   | 306.0               | 306.1            | 0.1      |
| AA                          | 29,501                | 144             | 1,255                               | 6.3                                      | 311.3                                                   | 311.3               | 311.4            | 0.1      |
| AB                          | 30,590                | 193             | 1,782                               | 4.4                                      | 317.0                                                   | 317.0               | 317.1            | 0.1      |
| AC                          | 31,421                | 121             | 1,318                               | 6.0                                      | 317.4                                                   | 317.4               | 318.3            | 0.9      |
| AD                          | 31,863                | 154             | 1,402                               | 5.6                                      | 318.3                                                   | 318.3               | 319.2            | 0.9      |
| AE                          | 33,109                | 220             | 1,640                               | 4.8                                      | 321.3                                                   | 321.3               | 322.0            | 0.7      |
| AF                          | 34,150                | 131             | 907                                 | 8.0                                      | 323.6                                                   | 323.6               | 324.3            | 0.7      |
| AG                          | 35,227                | 100             | 871                                 | 8.3                                      | 330.1                                                   | 330.1               | 330.2            | 0.1      |
| AH                          | 36,171                | 179             | 1,733                               | 4.2                                      | 334.4                                                   | 334.4               | 334.8            | 0.4      |
| AI                          | 36,844                | 193             | 1,610                               | 4.5                                      | 334.7                                                   | 334.7               | 335.3            | 0.6      |
| AJ                          | 37,520                | 186             | 1,382                               | 5.3                                      | 335.6                                                   | 335.6               | 336.5            | 0.9      |

<sup>1</sup>Feet above confluence with Lehigh River

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)

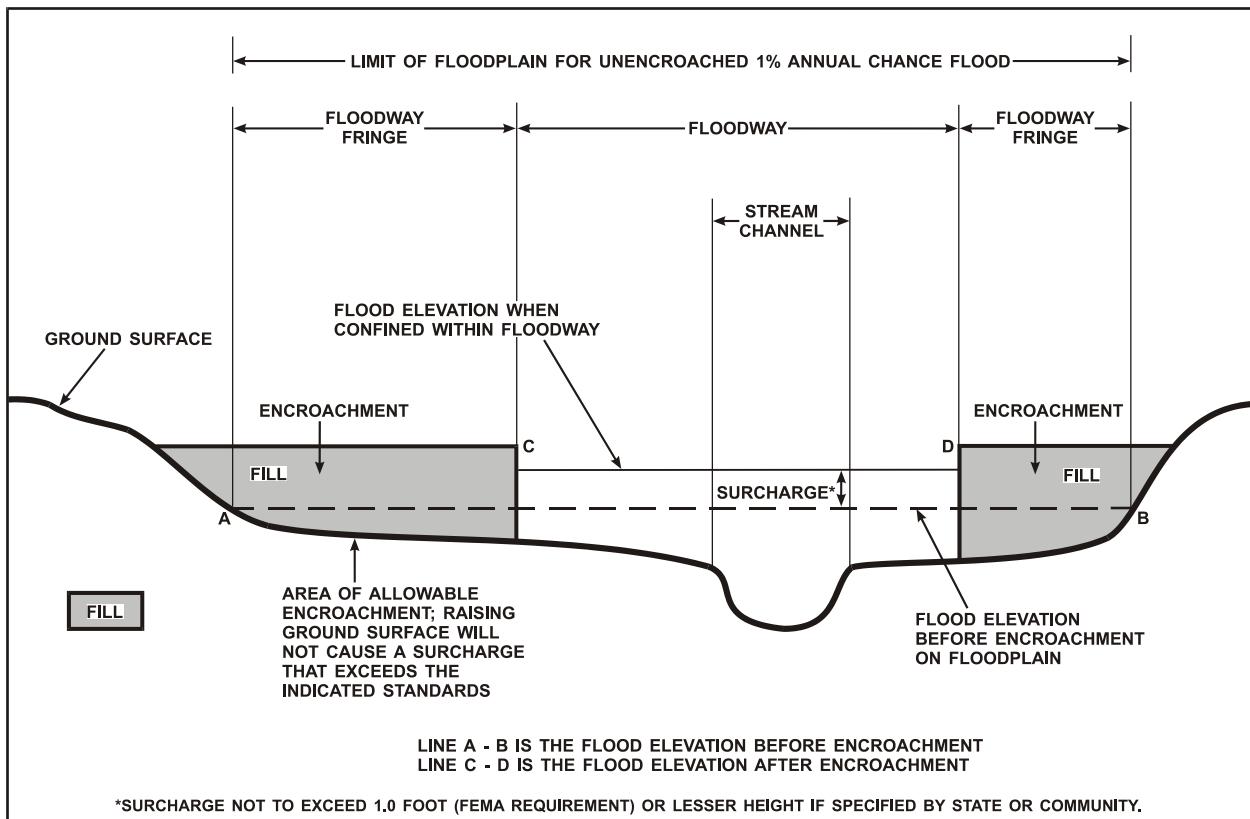
FLOODWAY DATA

SAUCON CREEK

| FLOODING SOURCE                      |          | FLOODWAY            |                                     |                                          | BASE FLOOD<br>WATER SURFACE ELEVATION<br>(FEET NAVD 88) |                     |                    |          |
|--------------------------------------|----------|---------------------|-------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------|--------------------|----------|
| CROSS SECTION                        | DISTANCE | WIDTH<br>(FEET)     | SECTION<br>AREA<br>(SQUARE<br>FEET) | MEAN<br>VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY                                              | WITHOUT<br>FLOODWAY | WITH<br>FLOODWAY   | INCREASE |
| Shoeneck Creek                       |          |                     |                                     |                                          |                                                         |                     |                    |          |
|                                      | A        | 3,274 <sup>1</sup>  | 100                                 | 283                                      | 8.7                                                     | 300.3               | 300.3              | 0.1      |
|                                      | B        | 5,386 <sup>1</sup>  | 120                                 | 541                                      | 4.4                                                     | 308.8               | 308.8              | 1.0      |
|                                      | C        | 8,184 <sup>1</sup>  | 100                                 | 333                                      | 6.9                                                     | 316.1               | 316.1              | 0.7      |
|                                      | D        | 9,768 <sup>1</sup>  | 120                                 | 387                                      | 6.0                                                     | 321.4               | 321.4              | 0.7      |
|                                      | E        | 12,936 <sup>1</sup> | 140                                 | 467                                      | 3.5                                                     | 329.7               | 329.7              | 0.7      |
|                                      | F        | 15,629 <sup>1</sup> | 80                                  | 213                                      | 7.2                                                     | 337.6               | 337.6              | 0.5      |
|                                      | G        | 16,685 <sup>1</sup> | 80                                  | 166                                      | 9.2                                                     | 340.5               | 340.5              | 0.9      |
|                                      | H        | 17,846 <sup>1</sup> | 140                                 | 548                                      | 2.6                                                     | 344.0               | 344.0              | 0.9      |
|                                      | I        | 20,222 <sup>1</sup> | 80                                  | 112                                      | 7.7                                                     | 352.6               | 353.1              | 0.5      |
| Silver Creek                         |          |                     |                                     |                                          |                                                         |                     |                    |          |
|                                      | A        | 338 <sup>2</sup>    | 260                                 | 920                                      | 1.9                                                     | 276.8               | 272.5 <sup>5</sup> | 1.0      |
|                                      | B        | 1,563 <sup>2</sup>  | 120                                 | 510                                      | 3.3                                                     | 284.6               | 284.6              | 0.8      |
| Waltz Creek                          |          |                     |                                     |                                          |                                                         |                     |                    |          |
|                                      | A-D*     |                     |                                     |                                          |                                                         |                     |                    |          |
|                                      | E        | 192.50 <sup>3</sup> | 31                                  | 108                                      | 8.3                                                     | 581.0               | 581.0              | 1.0      |
|                                      | F        | 193.95 <sup>3</sup> | 129                                 | 507                                      | 1.8                                                     | 585.2               | 585.2              | 0.0      |
|                                      | G        | 200.22 <sup>3</sup> | 146                                 | 209                                      | 4.3                                                     | 589.5               | 589.5              | 0.9      |
|                                      | H        | 208.83 <sup>3</sup> | 96                                  | 385                                      | 2.1                                                     | 605.9               | 605.9              | 1.0      |
|                                      | I        | 212.33 <sup>3</sup> | 58                                  | 122                                      | 6.1                                                     | 612.0               | 612.0              | 0.8      |
| West Branch Little<br>Bushkill Creek |          |                     |                                     |                                          |                                                         |                     |                    |          |
|                                      | A        | 1,672 <sup>4</sup>  | 29                                  | 85                                       | 9.0                                                     | 688.8               | 688.8              | 0.2      |
|                                      | B        | 2,262 <sup>4</sup>  | 38                                  | 150                                      | 5.1                                                     | 691.8               | 691.8              | 0.3      |
|                                      | C        | 2,802 <sup>4</sup>  | 35                                  | 84                                       | 9.0                                                     | 694.0               | 694.0              | 0.0      |
|                                      | D        | 3,080 <sup>4</sup>  | 355                                 | 1,727                                    | 0.4                                                     | 696.1               | 696.1              | 0.9      |

<sup>1</sup>Feet above confluence with Bushkill Creek

<sup>2</sup>Feet above confluence with Saucon Creek


<sup>3</sup>Hundreds of feet above confluence with Martins Creek

<sup>4</sup>Feet above Limit of Detailed Study (Limit of Detailed Study  
is located approximately 470 feet downstream of State Route 512)

<sup>5</sup>Elevation computed without consideration of backwater effects  
from Saucon Creek

\*No floodway computed

The area between the floodway and 1-percent-annual-chance floodplain boundaries is termed the floodway fringe. The floodway fringe encompasses the portion of the floodplain that could be completely obstructed without increasing the water-surface elevation of the 1-percent-annual-chance flood by more than 1.0 foot at any point. Typical relationships between the floodway and the floodway fringe and their significance to floodplain development are shown in Figure 1, "Floodway Schematic."



FLOODWAY SCHEMATIC

Figure 1

## 5.0 INSURANCE APPLICATIONS

For flood insurance rating purposes, flood insurance zone designations are assigned to a community based on the results of the engineering analyses. The zones are as follows:

### Zone A

Zone A is the flood insurance rate zone that corresponds to the 1-percent-annual-chance floodplains that are determined in the FIS by approximate methods. Because detailed hydraulic analyses are not performed for such areas, no base flood elevations or depths are shown within this zone.

### Zone AE

Zone AE is the flood insurance rate zone that corresponds to the 1-percent-annual-chance floodplains that are determined in the FIS by detailed methods. In most instances, whole-foot base flood elevations derived from the detailed hydraulic analyses are shown at selected intervals within this zone.

### Zone AH

Zone AH is the flood insurance rate zone that corresponds to the areas of 1-percent-annual-chance shallow flooding (usually areas of ponding) where average depths are between 1 and 3 feet. Whole-foot base flood elevations derived from the detailed hydraulic analyses are shown at selected intervals within this zone.

### Zone AO

Zone AO is the flood insurance rate zone that corresponds to the areas of 1-percent-annual-chance shallow flooding (usually sheet flow on sloping terrain) where average depths are between 1 and 3 feet. Average whole-foot depths derived from the detailed hydraulic analyses are shown within this zone.

### Zone A99

Zone A99 is the flood insurance rate zone that corresponds to areas of the 1-percent-annual-chance floodplain that will be protected by a Federal flood protection system where construction has reached specified statutory milestones. No base flood elevations or depths are shown within this zone.

### Zone V

Zone V is the flood insurance rate zone that corresponds to the 1-percent-annual-chance coastal floodplains that have additional hazards associated with storm waves. Because approximate hydraulic analyses are performed for such areas, no base flood elevations are shown within this zone.

### Zone VE

Zone VE is the flood insurance rate zone that corresponds to the 1-percent-annual-chance coastal floodplains that have additional hazards associated with storm waves. Whole-foot base flood elevations derived from the detailed hydraulic analyses are shown at selected intervals within this zone.

### Zone X

Zone X is the flood insurance rate zone that corresponds to areas outside the 0.2-percent-annual-chance floodplain, areas within the 0.2-percent-annual-chance floodplain, and to areas of 1-percent-annual-chance flooding where average depths are less than 1 foot, areas of 1-percent-annual-chance flooding where the

contributing drainage area is less than 1 square mile, and areas protected from the 1-percent-annual-chance flood by levees. No base flood elevations or depths are shown within this zone.

#### Zone D

Zone D is the flood insurance rate zone that corresponds to unstudied areas where flood hazards are undetermined, but possible.

### 6.0 FLOOD INSURANCE RATE MAP

The FIRM is designed for flood insurance and floodplain management applications.

For flood insurance applications, the map designates flood insurance rate zones as described in Section 5.0 and, in the 1-percent-annual-chance floodplains that were studied by detailed methods, shows selected whole-foot base flood elevations or average depths. Insurance agents use the zones and base flood elevations in conjunction with information on structures and their contents to assign premium rates for flood insurance policies.

For floodplain management applications, the map shows by tints, screens, and symbols, the 1- and 0.2-percent-annual-chance floodplains. Floodways and the locations of selected cross sections used in the hydraulic analyses and floodway computations are shown where applicable.

The current FIRM presents flooding information for the entire geographic area of Northampton County. Historical data relating to the maps prepared for each community prior to the April 6, 2001, countywide FIS, are presented in Table 6, "Community Map History."

### 7.0 OTHER STUDIES

FISs have been prepared for Bucks County, Pennsylvania (All Jurisdictions); Carbon County, Pennsylvania (All Jurisdictions); Lehigh County, Pennsylvania (All Jurisdictions); Monroe County, Pennsylvania (All Jurisdictions); and Warren County, New Jersey (All Jurisdictions) (References 61-65).

Information pertaining to revised and unrevised flood hazards for each jurisdiction within Northampton County has been compiled into this FIS. Therefore, this FIS supersedes all previously printed FIS reports, FIRMs, FBFMs, and FHBMs for all of the jurisdictions within Northampton County.

| COMMUNITY NAME           | INITIAL NFIP MAP DATE | FLOOD HAZARD BOUNDARY MAP REVISIONS DATE | INITIAL FIRM DATE | FIRM REVISIONS DATE                                   |
|--------------------------|-----------------------|------------------------------------------|-------------------|-------------------------------------------------------|
| Allen, Township of       | September 6, 1974     | May 21, 1976                             | May 19, 1981      |                                                       |
| Bangor, Borough of       | January 25, 1974      | None                                     | February 2, 1977  |                                                       |
| Bath, Borough of         | July 30, 1976         | None                                     | February 17, 1988 |                                                       |
| Bethlehem, City of       | June 15, 1973         | September 19, 1975                       | July 3, 1978      |                                                       |
| Bethlehem, Township of   | June 14, 1974         | September 24, 1976                       | June 4, 1980      |                                                       |
| Bushkill, Township of    | November 8, 1974      | July 25, 1980                            | March 4, 1988     |                                                       |
| Chapman, Borough of      | November 15, 1974     | None                                     | July 30, 1982     |                                                       |
| East Allen, Township of  | February 11, 1983     | None                                     | February 11, 1983 |                                                       |
| East Bangor, Borough of  | November 15, 1974     | None                                     | February 12, 1982 |                                                       |
| Easton, City of          | February 9, 1973      | None                                     | February 9, 1973  | November 7, 1975<br>February 6, 1976<br>March 9, 1979 |
| Forks, Township of       | November 8, 1974      | January 23, 1976                         | July 16, 1980     |                                                       |
| Freemansburg, Borough of | December 28, 1973     | June 4, 1976                             | September 1, 1977 |                                                       |
| Glendon, Borough of      | November 15, 1974     | November 28, 1975                        | January 16, 1980  |                                                       |
| Hanover, Township of     | November 23, 1973     | None                                     | August 1, 1977    |                                                       |
| Hellertown, Borough of   | February 8, 1973      | October 22, 1976                         | September 5, 1979 |                                                       |

TABLE 6

FEDERAL EMERGENCY MANAGEMENT AGENCY  
**NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)**

**COMMUNITY MAP HISTORY**

| COMMUNITY NAME                  | INITIAL IDENTIFICATION | FLOOD HAZARD BOUNDARY MAP REVISIONS DATE | FIRM EFFECTIVE DATE | FIRM REVISIONS DATE |
|---------------------------------|------------------------|------------------------------------------|---------------------|---------------------|
| Lehigh, Township of             | November 15, 1974      | None                                     | December 15, 1981   |                     |
| Lower Mount Bethel, Township of | January 4, 1974        | None                                     | March 1, 1977       | October 30, 1981    |
| Lower Nazareth, Township of     | November 15, 1974      | March 28, 1980                           | May 4, 1988         |                     |
| Lower Saucon, Township of       | June 28, 1974          | September 10, 1976                       | September 28, 1979  |                     |
| Moore, Township of              | August 2, 1974         | July 16, 1976                            | October 17, 1978    |                     |
| Nazareth, Borough of            | January 9, 1974        | May 28, 1976                             | October 8, 1982     |                     |
| North Catasauqua, Borough of    | May 3, 1974            | July 2, 1976                             | July 16, 1981       |                     |
| Northampton, Borough of         | April 5, 1974          | June 4, 1976                             | May 3, 1982         |                     |
| Palmer, Township of             | April 20, 1973         | None                                     | June 28, 1976       | March 10, 1978      |
| Pen Argyl, Borough of           | November 1, 1974       | None                                     | June 25, 1976       |                     |
| Plainfield, Township of         | September 13, 1974     | June 11, 1976                            | January 16, 1980    |                     |
| Portland, Borough of            | April 12, 1974         | May 21, 1976                             | September 16, 1981  |                     |
| Roseto, Borough of              | November 15, 1974      | None                                     | April 6, 2001       |                     |
| Stockertown, Borough of         | August 2, 1974         | May 28, 1976                             | December 4, 1979    |                     |
| Tatamy, Borough of              | April 12, 1974         | June 25, 1976                            | December 4, 1979    |                     |
| Upper Mount Bethel, Township of | November 8, 1974       | None                                     | September 30, 1981  |                     |

TABLE 6

FEDERAL EMERGENCY MANAGEMENT AGENCY

**NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)**

**COMMUNITY MAP HISTORY**

| COMMUNITY NAME              | INITIAL IDENTIFICATION | FLOOD HAZARD BOUNDARY MAP REVISIONS DATE | FIRM EFFECTIVE DATE | FIRM REVISIONS DATE |
|-----------------------------|------------------------|------------------------------------------|---------------------|---------------------|
| Upper Nazareth, Township of | December 27, 1971      | None                                     | February 25, 1983   |                     |
| Walnutport, Borough of      | January 9, 1974        | June 4, 1976                             | June 1, 1978        |                     |
| Washington, Township of     | November 1, 1974       | September 24, 1976                       | September 30, 1988  |                     |
| West Easton, Borough of     | December 28, 1973      | June 18, 1976                            | March 1, 1979       |                     |
| Williams, Township of       | May 17, 1974           | June 11, 1976                            | September 14, 1979  |                     |
| Wilson, Borough of          | September 13, 1974     | June 18, 1976                            | January 16, 1980    |                     |
| Wind Gap, Borough of        | June 28, 1974          | June 4, 1976                             | May 19, 1981        | May 16, 1994        |

TABLE 6

FEDERAL EMERGENCY MANAGEMENT AGENCY  
**NORTHAMPTON COUNTY, PA  
(ALL JURISDICTIONS)**

**COMMUNITY MAP HISTORY**

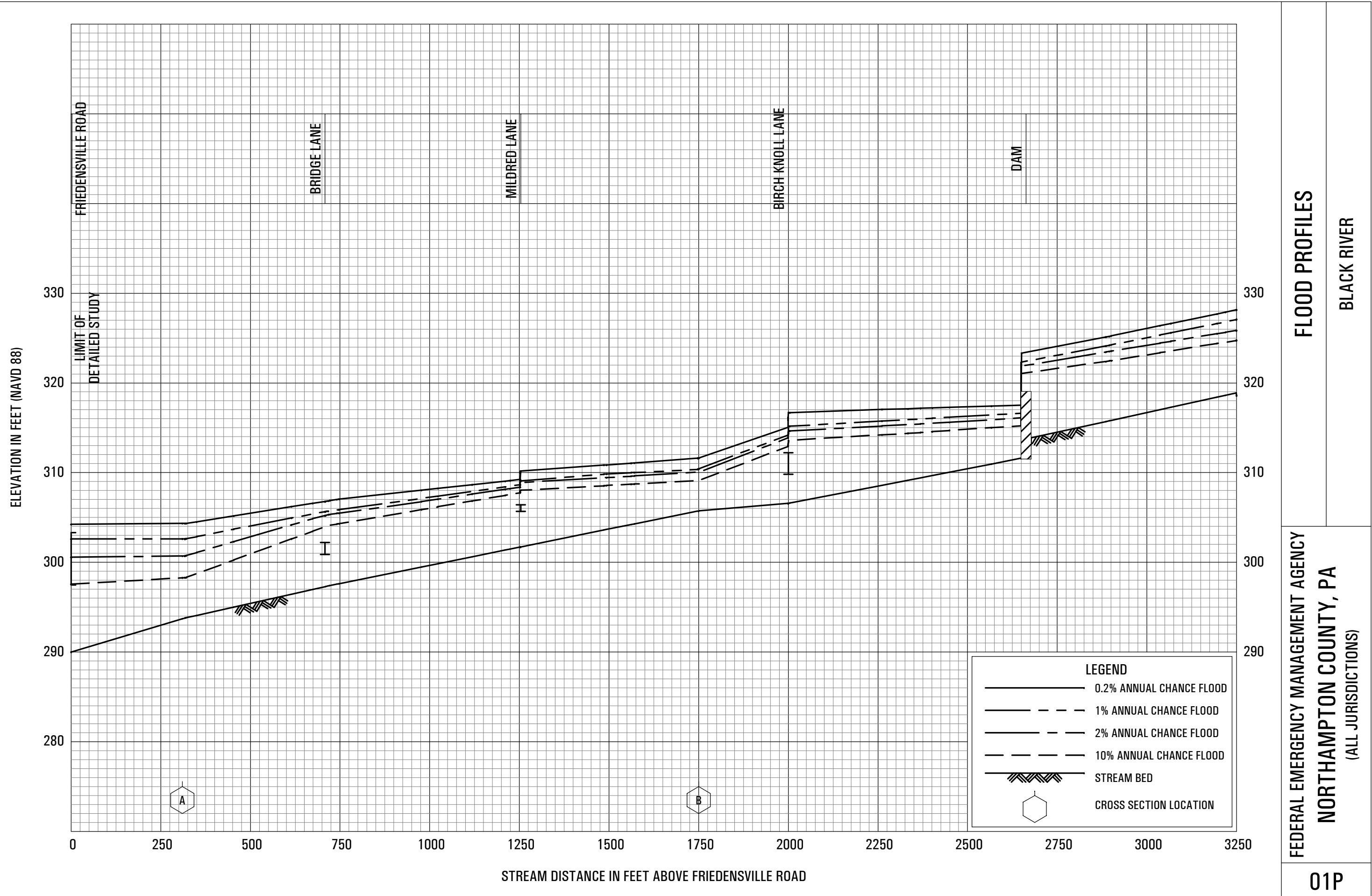
This is a multi-volume FIS. Each volume may be revised separately, in which case it supersedes the previously printed volume. Users should refer to the Table of Contents in Volume 1 for the current effective date of each volume; volumes bearing these dates contain the most up-to-date flood hazard data.

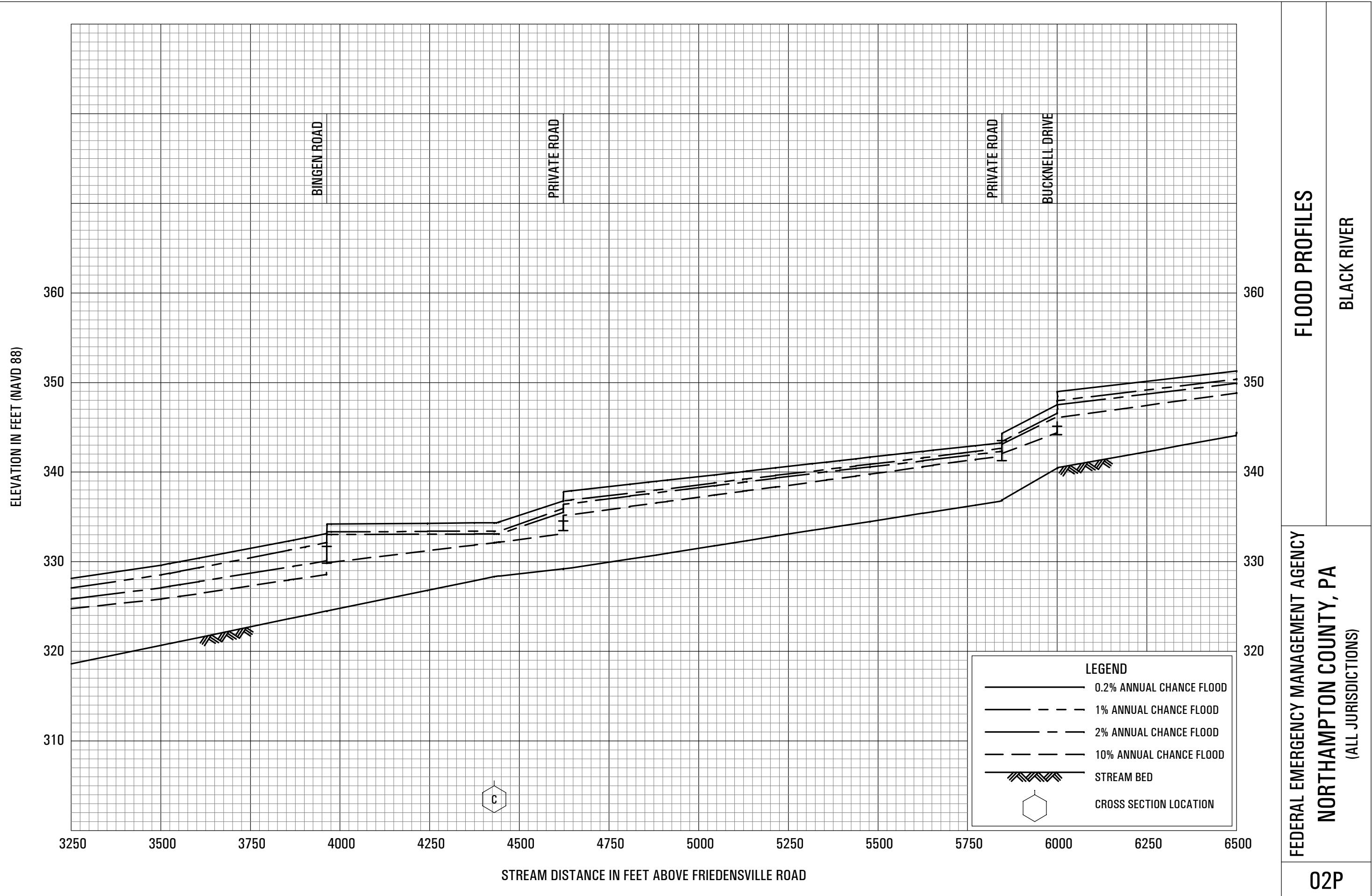
## 8.0 LOCATION OF DATA

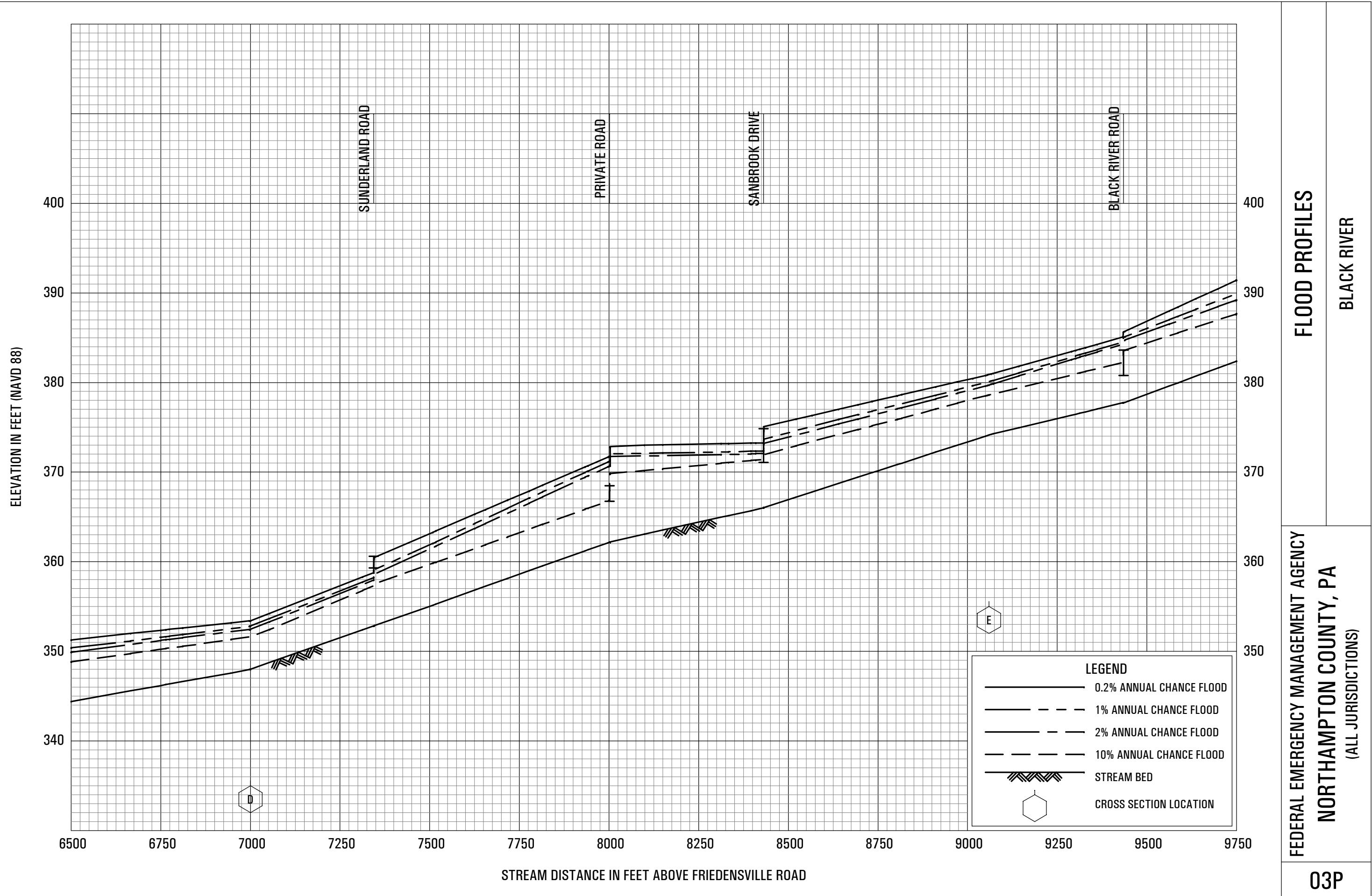
Information concerning the pertinent data used in preparation of this study can be obtained by contacting FEMA, Mitigation Division, One Independence Mall, Sixth Floor, 615 Chestnut Street, Philadelphia, Pennsylvania 19106-4404.

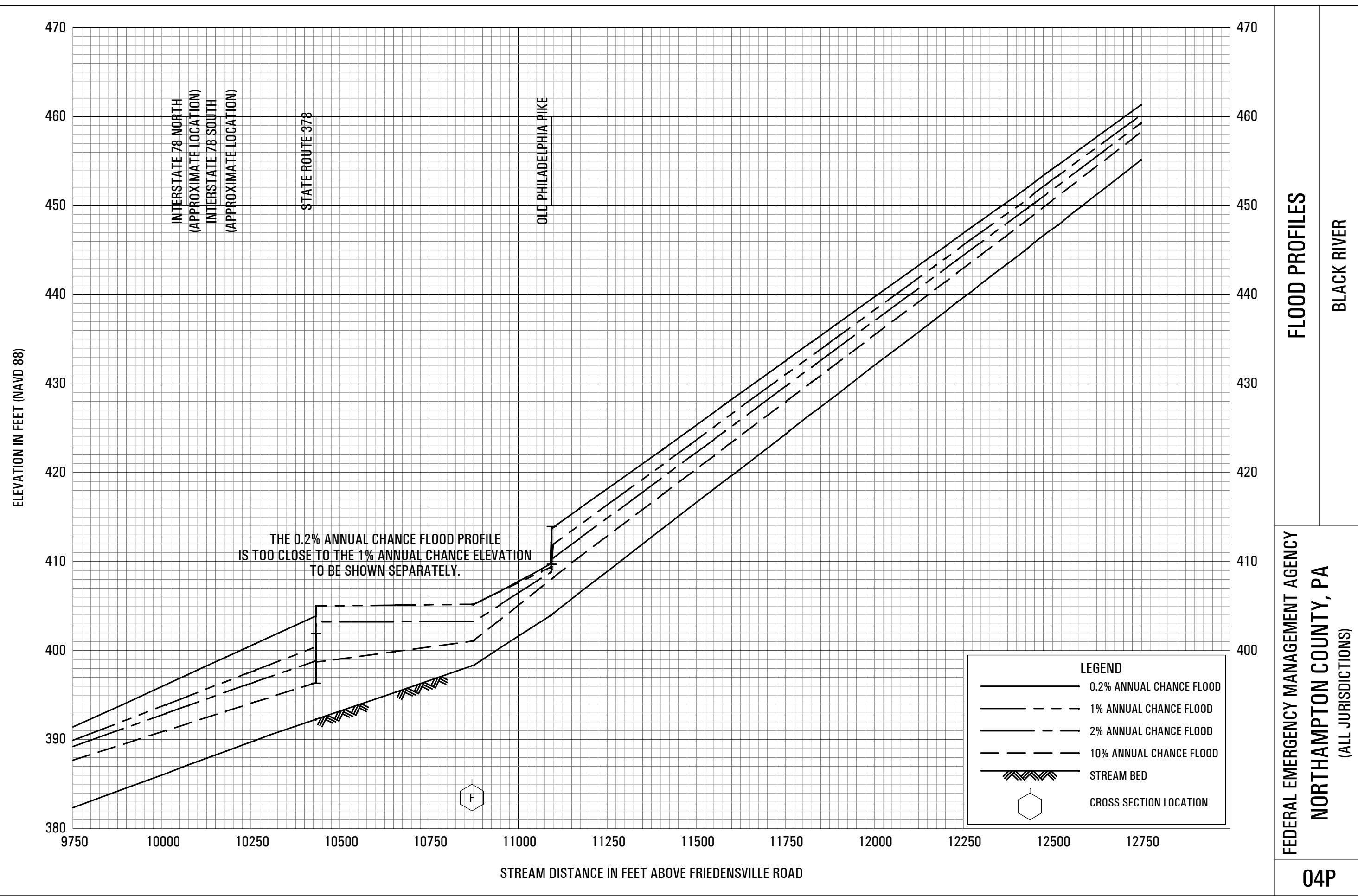
## 9.0 BIBLIOGRAPHY AND REFERENCES

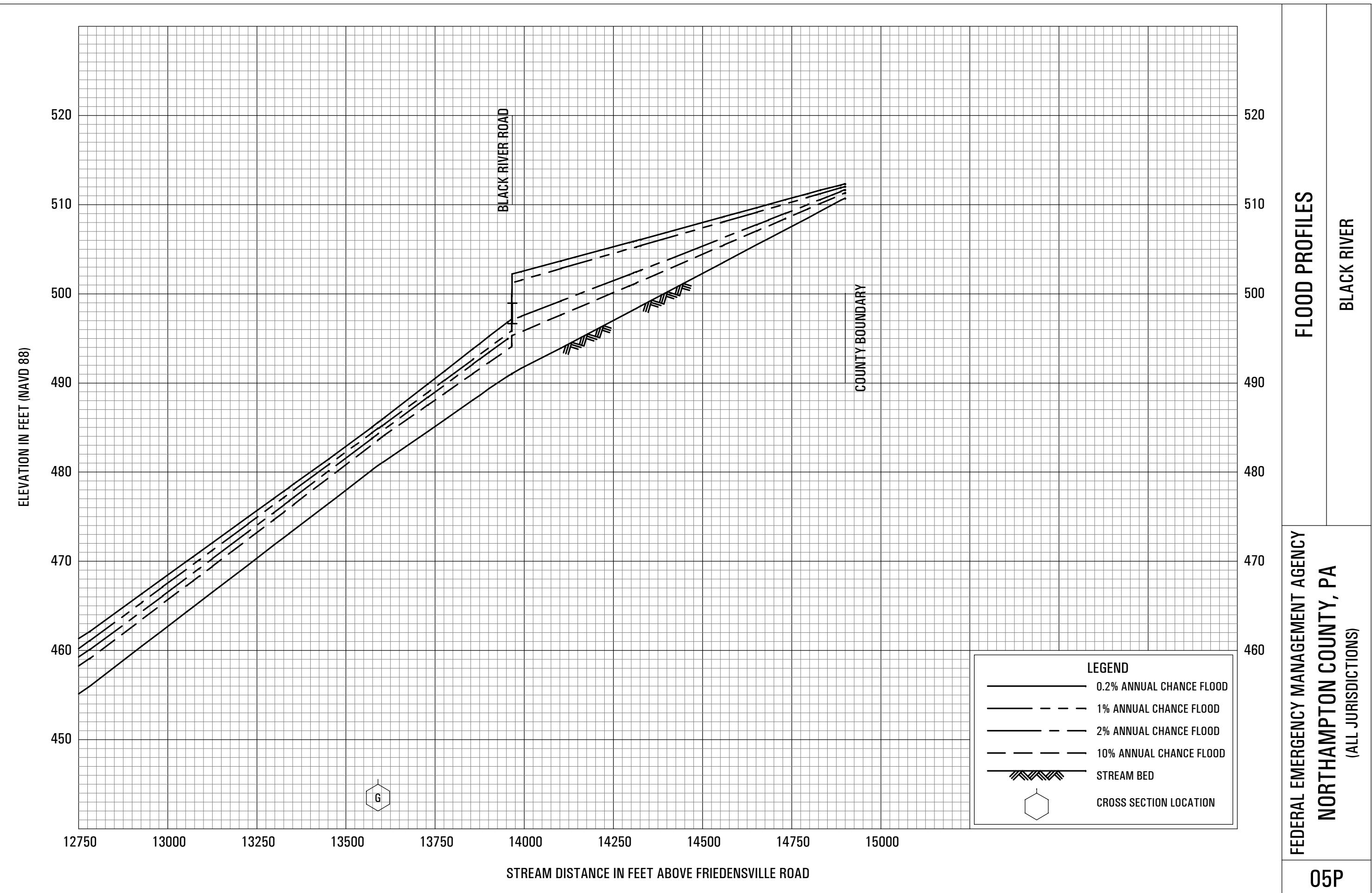
1. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Data Service, Monthly Averages of Temperature and Precipitation for Pennsylvania Climatic Divisions, 1941-1970, Asheville, North Carolina, National Climatic Center, 1971.
2. U.S. Army Corps of Engineers, Hydrologic Engineering Center, Regional Frequency Study, Upper Delaware and Hudson River Basins, Davis, California, November 1974.
3. Water Resources Council, "A Uniform Technique for Determining Flood Flow Frequency," Bulletin 15, Washington, D.C., December 1967.
4. U.S. Department of the Interior, Geological Survey, 7.5-Minute Series Topographic Maps, Scale 1:24,000, Contour Interval 20 Feet: Kunkletown, Pennsylvania, 1960, Photorevised 1970; Contour Interval 10 Feet: Cementon, Pennsylvania, 1964, Photorevised 1972; Catasauqua, Pennsylvania, 1964, Photorevised 1972.
5. Commonwealth of Pennsylvania, Department of Environmental Resources, Water Resources Bulletin No. 6, Pennsylvania Gazetteer of Streams, Part I, by L. C. Shaw and W. F. Busch, Harrisburg, Pennsylvania, 1971.
6. Delaware River Basin Commission, Basin-Wide Program for Flood Plain Delineation, Trenton, New Jersey, prepared by Anderson-Nichols & Company, Inc., Boston, Massachusetts, 1973.
7. U.S. Department of the Interior, Geological Survey, Water Resources Investigations 82-21, Evaluation of the Streamflow-Data Program in Pennsylvania by Herbert J. Flippo, Jr., Harrisburg, Pennsylvania, 1982.
8. U.S. Department of the Interior, U.S. Geological Survey, Water Resources Data for Pennsylvania, Part 1, Surface Water Records, 1974.
9. Justin and Courtney, Inc., Regional Flood Frequency Study, Lehigh River Basin (Unpublished).

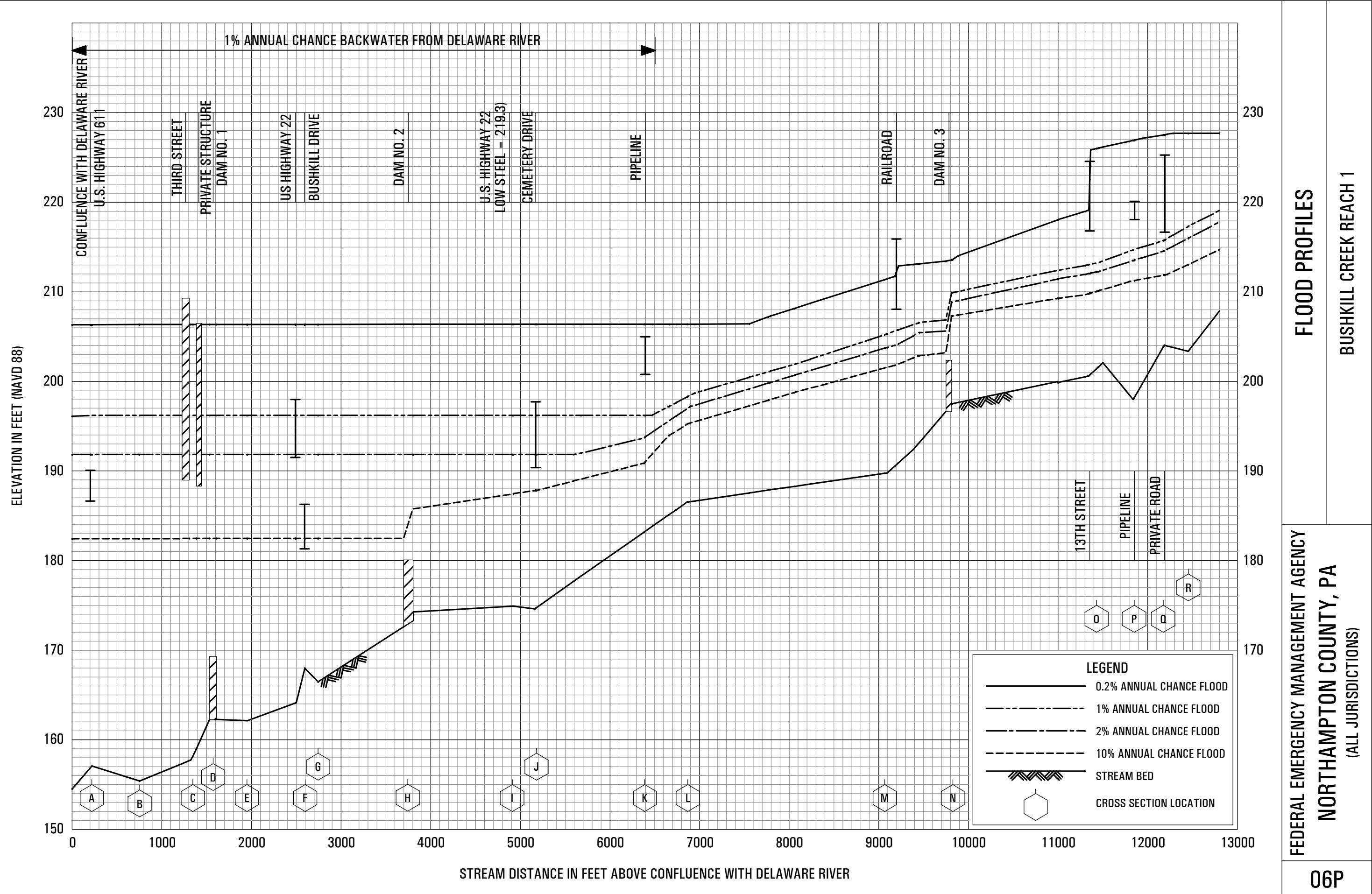

10. U.S. Department of Housing and Urban Development, Federal Insurance Administration, Flood Insurance Study, City of Bethlehem, Lehigh and Northampton Counties, Pennsylvania, Washington, D.C., January 3, 1978.
11. Chief of Engineering Division, U.S. Army Corps of Engineers, Philadelphia, Pennsylvania, written communication dated 24 March 1976.
12. U.S. Department of Housing and Urban Development, Federal Insurance Administration, Flood Insurance Study, Township of Palmer, Northampton County, Pennsylvania, March 10, 1988.
13. U.S. Department of Interior, Geological Survey, Water Resources Data for Pennsylvania, (New York, New Jersey), Part 1, published annually since 1961 by District Office, Harrisburg, Pennsylvania.
14. U.S. Department of Interior, Geological Survey, Floods in Pennsylvania, A Manual for Estimation of Their Magnitude and Frequency, Open File Report 76-391, May 1976.
15. The Pennsylvania State University, Department of Civil Engineering, Flood Hydrograph Synthesis for Rural Pennsylvania Watersheds, Bae Ho Lee, Brian M. Reich, Thomas M. Rachford, Gert Aron, University Park, Pennsylvania, June 1974.
16. U.S. Army Corps of Engineers, Hydrologic Engineering Center, HEC-1 Flood Hydrograph Package, Users Manual, Davis, California, January 1973.
17. U.S. Department of Agriculture, Soil Conservation Service, Technical Release No. 38, Washington, D.C.
18. U.S. Department of Interior, Geological Survey, Office of Water Data Collection, Interagency Advisory Committee on Water Data, Guidelines for Determining Flood Flow Frequency, Bulletin 17B, Reston, Virginia, Revised September 1981.
19. John McSparran's Equation for Calculating Time to Peak,  $T_p$ , as described in ASCE Journal of the Hydraulics Division, July 1968, Pages 937-960, "Design Hydrographs for Pennsylvania Watersheds."
20. B. M. Reich, B. M. McGinnis, and R. L. Kerr, Design Procedures for Rainfall-Duration-Frequency in Pennsylvania, Department of Forests and Waters, Commonwealth of Pennsylvania, August 1970.
21. Commonwealth of Pennsylvania, Department of Environmental Resources, in cooperation with the U.S. Geological Survey, Water Resources Bulletin No. 13, Floods in Pennsylvania, by H. N. Flippo, 1977.
22. U.S. Department of Agriculture, Soil Conservation Service, Technical Release No. 55, Urban Hydrology for Small Watersheds, Washington, D.C., January 1974.

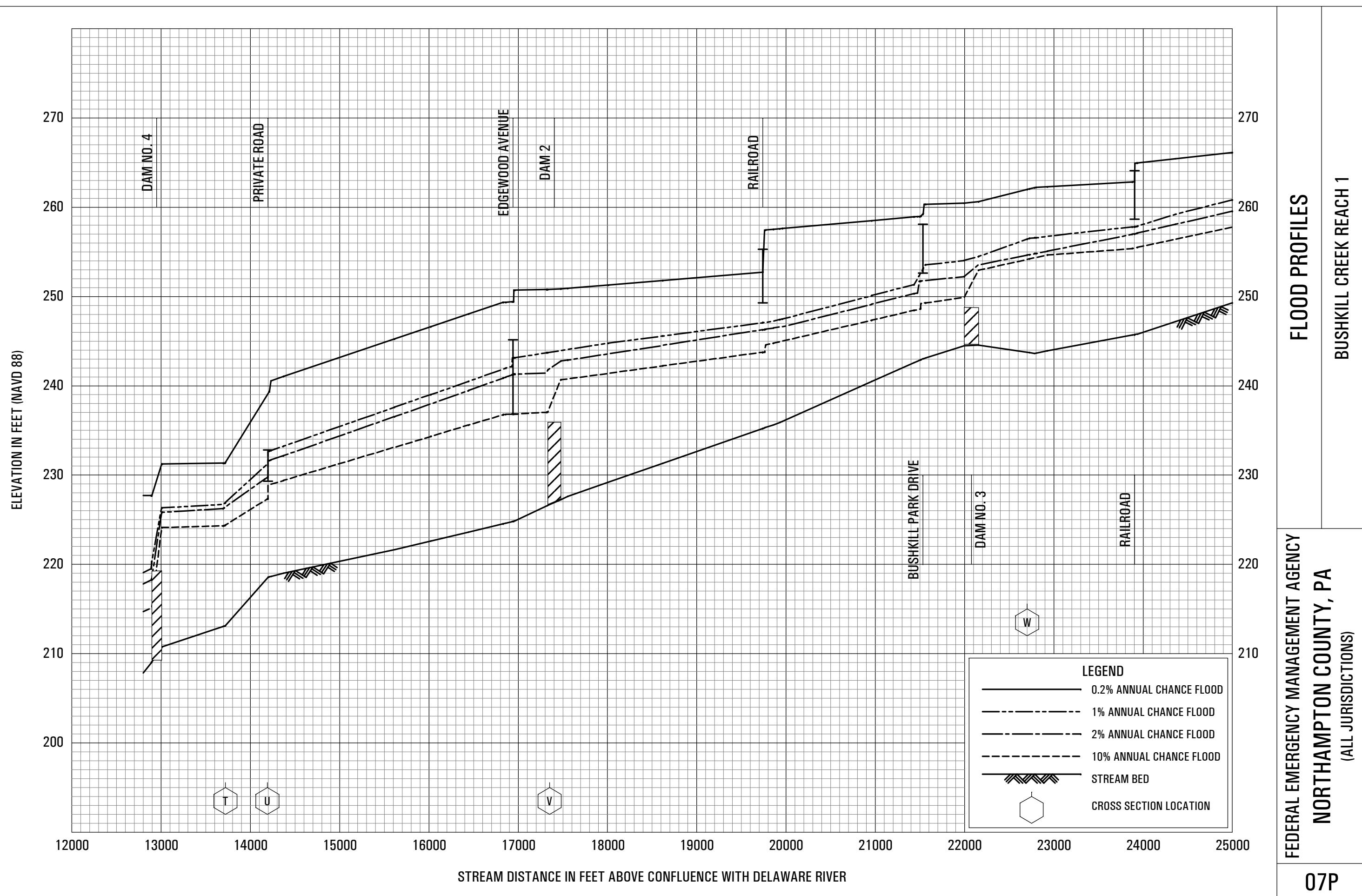

23. U.S. Army Corps of Engineers, Philadelphia District, Flood Plain Information, Bushkill Creek, Vicinity of Easton, Pennsylvania, Philadelphia, Pennsylvania, 1972.
24. U.S. Department of the Interior, Geological Survey, Water Supply Paper 1672, Magnitude and Frequency of Floods in the United States, Part 1-B, North Atlantic Slope Basins, New York to York River by R. H. Tice, Washington, D.C., 1968.
25. U.S. Army Corps of Engineers, Office of the Chief of Engineers, Standard Project Flood Determinations (EM-1110-2-1411), Washington, D.C., 1965.
26. U.S. Army Corps of Engineers, The Hydrologic Engineering Center, Hydrologic Engineering Methods for Water Resources Development, Volume 3, Hydrologic Frequency Analysis, Davis, California, 1975.
27. U.S. Army Corps of Engineers, Philadelphia District, Flood Plain Information, Little Bushkill Creek and Shoenec Creek, Northampton County, Pennsylvania, Philadelphia, Pennsylvania, 1973.
28. U.S. Army Corps of Engineers, Philadelphia District, Modification of the Francis E. Walter Dam and Reservoir, General Design Memorandum, Appendix J - Hydrology and Hydraulics, August 1985.
29. U.S. Army Corps of Engineers, Philadelphia District, F. E. Walter Reservoir, Lehigh River, Pennsylvania, Water Control Manual, Revised October 1994.
30. U.S. Army Corps of Engineers, Philadelphia District, Delaware River Basin Study Survey Report, Technical Appendices, August 1984.
31. U.S. Geological Survey Scientific Investigations Report 2008-5102, Regression Equations for Estimating Flood Flows at Selected Recurrence Intervals for Ungaged Streams in Pennsylvania, Roland M.A., Stuckey M.H. 2008.
32. U.S. Department of the Interior, Geological Survey, In cooperation with the Federal Emergency Management Agency, Open-File Report 2008-1203, Flood Magnitude and Frequency of the Delaware River in New Jersey, New York, and Pennsylvania, Robert D. Schopp and Gary D. Firda. Virginia, 2008.
33. Quinn and Associates, Inc., of Horsham, Pennsylvania, Maps compiled from aerial photos, Scale 1"=1,000', Lehigh River and Hokendauqua Creek, Township of Allen, Lehigh County, Pennsylvania, April 1974.
34. A. O. Quinn Associates of Horsham, Pennsylvania, Topographic Maps compiled from aerial photos, scale 1"=1,000': Borough of Wind Gap, Northampton County, Pennsylvania, flown in December 1978.

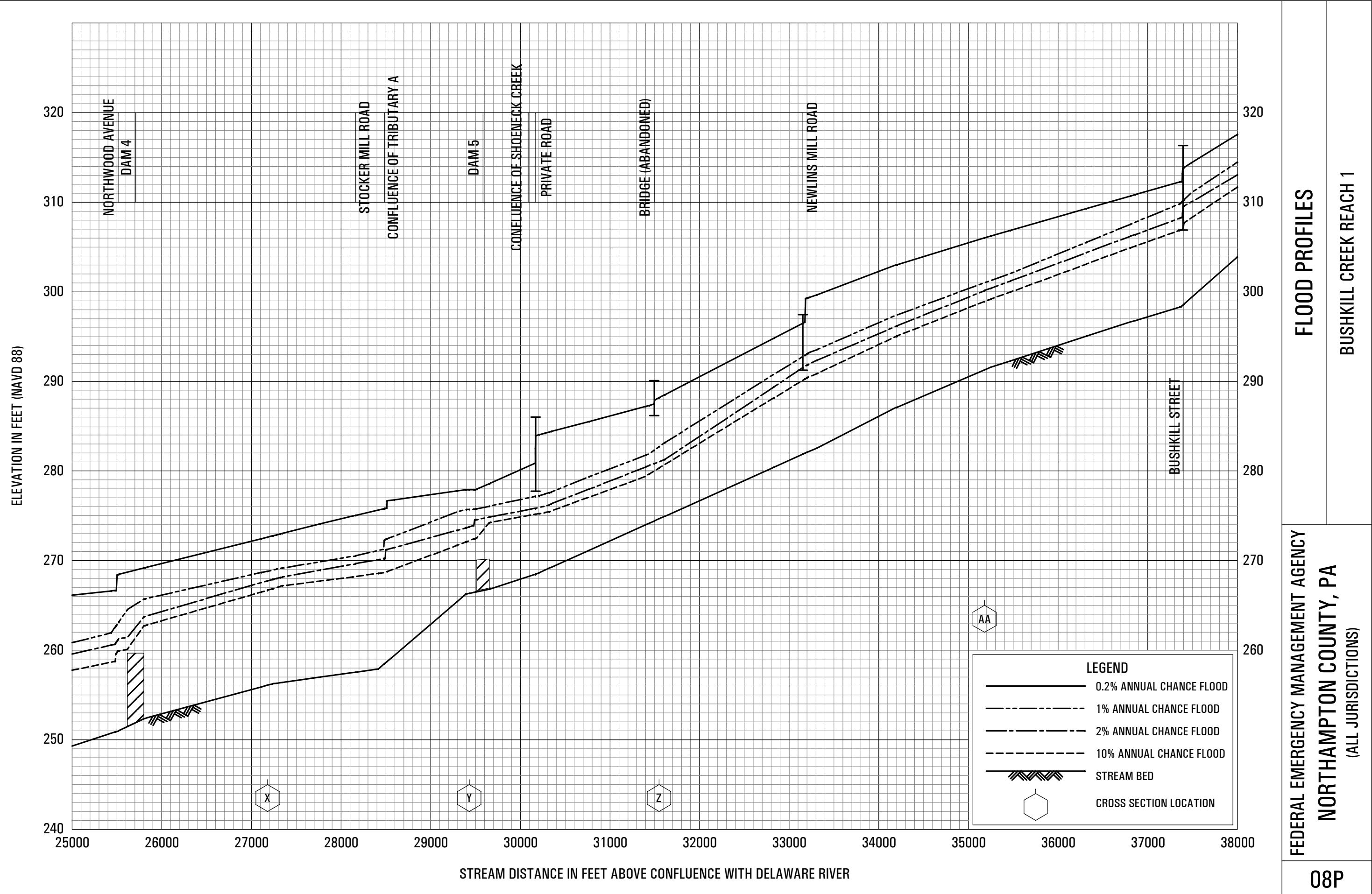

35. U.S. Geological Survey, 7.5-Minute Series Topographic Maps, Scale 1:24,000, Contour Interval 10 and 20 feet: Allentown, Pa., (1964), Photorevised (1972); Catasauqua, Pa. (1964); Hellertown, Pa. (1965), Photorevised (1972); Nazareth, Pa. (1964), Photorevised (1972); Wind Gap, Pa. (1960), Photorevised (1970); Bangor, Pa. (1956), Photorevised (1973); Saylorsburg, Pa. (1960), Photorevised (1970); Stroudsburg, Pa. (1955), Photorevised (1973).
36. U.S. Army Corps of Engineers, Philadelphia District, memorandums, computation sheets, and other file information.
37. U.S. Army Corps of Engineers, Philadelphia District, HEC-2 Computer Coding for Little Bushkill Creek.
38. U.S. Army Corps of Engineers, Hydrologic Engineering Center, Computer Program 723-X6-L202A, HEC-2, Water Surface Profiles, Users Manual, Davis, California, October 1973.
39. U.S. Department of Interior, Geological Survey, Water Resources Investigations 86-4195, Technique for Estimating Depths of 100-Year Floods in Pennsylvania, by Herbert J. Flippo, Jr., Harrisburg, Pennsylvania, 1986.
40. U.S. Department of Interior, Geological Survey, Techniques of Water Resources Investigations, Measurement of Peak Discharge at Culverts by Indirect Methods, by G. L. Bodhaine, Washington, D.C., 1868.
41. U.S. Department of Interior, Geological Survey, Techniques of Water Resources Investigations, Measurement of Peak Discharge at Width Contractions by Indirect Methods, by H. F. Matthai, Washington, D.C., 1967.
42. U.S. Federal Highway Administration, Report FHWA/RD-86/108, Bridge Waterways Analysis Model/Research Report by J. O. Shearman, W. H. Kirby, V. R. Schneider, and H. N. Flippo, Jr., Washington, D.C., 1986.
43. National Technical Information Service, Bridge Waterways Analysis Model/User's Instructions (WSPRO), by J. O. Shearman, W. H. Kirby, and V. R. Schneider, Springfield, Virginia, 1985.
44. U.S. Department of Interior, Geological Survey, Computer Applications for Step-Backwater and Floodway Analyses, Open File Report 76-499, 1976.
45. Federal Emergency Management Agency, Federal Insurance Administration, Flood Insurance Study, Borough of Tatamy, Northampton County, Pennsylvania, Washington, D.C., December 12, 1979.
46. American Society of Civil Engineers, Preprint 2559, Approximate Method for Quick Flood Plain Mapping, by R. F. Powell, L. D. James, and E. D. Jones, New York, November 1975.

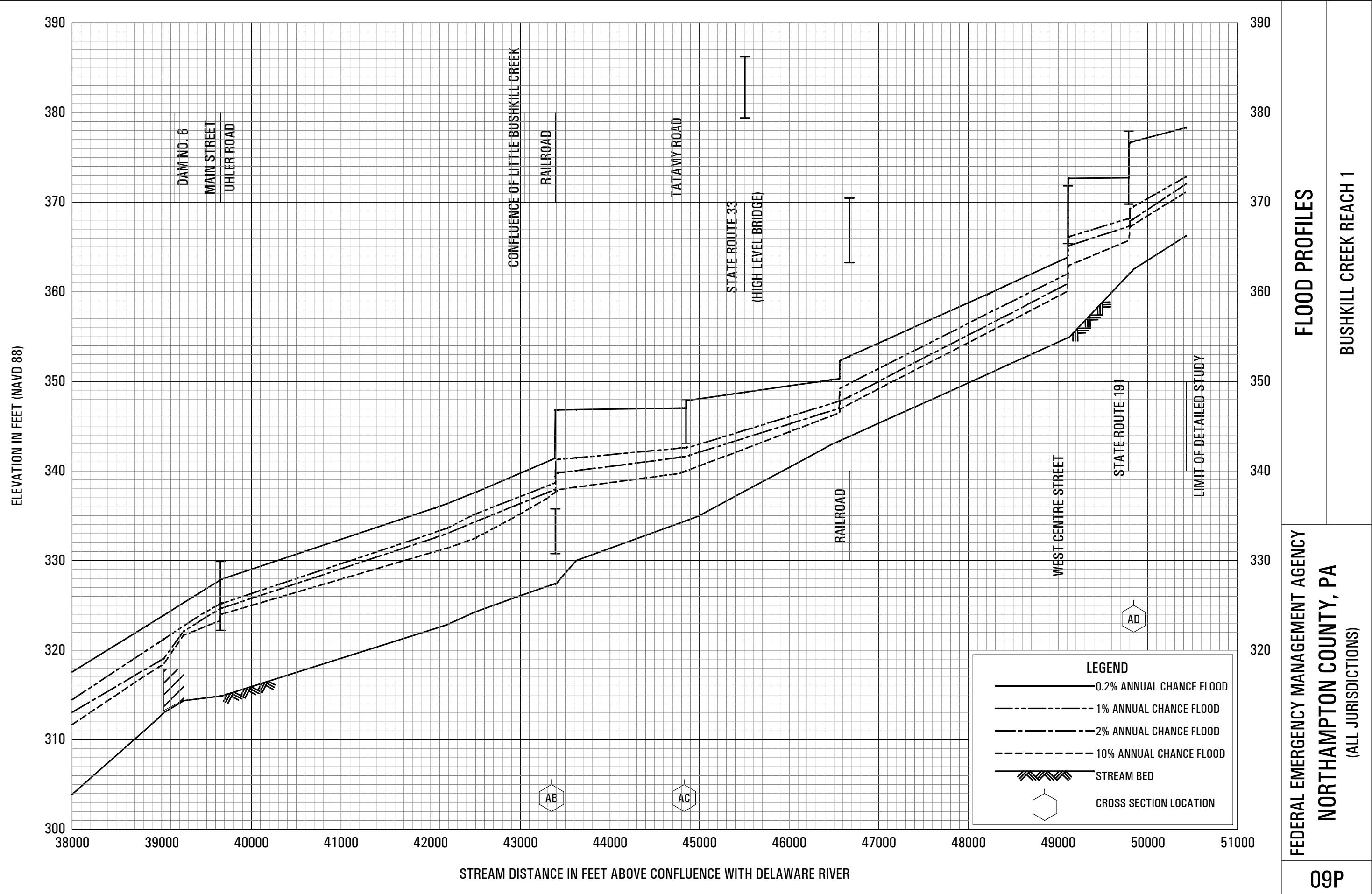

47. D. M. Thomas, Water Resources Circular 14, Flood Depth Frequency in New Jersey, Trenton, New Jersey, 1964.
48. Justin & Courtney, Inc., "Nordep," Philadelphia, Pennsylvania, September 1974.
49. U.S. Army Corps of Engineers, Philadelphia District, Flood Plain Management Services Branch, Digital Terrain Model (DTM), Delaware River: Philadelphia to Tocks Island, 4 foot contour accuracy, digital layers include: triangulated irregular network (TIN), transportation, hydrography, spot elevations, corporate limits, and orthophotography, developed by Greenhorne and O'Mara, Inc., Greenbelt, MD, 1995.
50. U.S. Army Corps of Engineers, Philadelphia District, Flood Plain Management Services Branch, Aerial Photography, Delaware River: Philadelphia to Tocks Island, scale 1"=1,400', developed by Quinn Associates, Horsham, PA, April 1994.
51. U.S. Army Corps of Engineers, Philadelphia District, Flood Plain Management Services Branch, CROSS, Arc/Info software application, developed by Flood Plain Management Services Branch, Philadelphia District, 1993.
52. U.S. Army Corps of Engineers, Philadelphia District, Flood Plain Management Services Branch, DFMAP, Arc/Info software application, developed by the Philadelphia District and Greenhorne & O'Mara, Inc., Greenbelt, MD, 1993.
53. U.S. Army Corps of Engineers, Philadelphia District, Flood Plain Management Services Branch, CHANNEL, Arc/Info software application, developed by the Philadelphia District and Greenhorne & O'Mara, Inc., Greenbelt, MD, 1993.
54. U.S. Army Corps of Engineers, Philadelphia District, Flood Plain Management Services Branch, Digital Terrain Model (DTM), Lehigh River Basin: Northampton and Lehigh Counties, 4 foot contour accuracy, digital layers include: triangulated irregular network (TIN), transportation, hydrography, spot elevations, corporate limits, and orthophotography, developed by Greenhorne and O'Mara, Inc., Greenbelt, MD, 1996.
55. U.S. Army Corps of Engineers, Philadelphia District, Flood Plain Management Services Branch, Aerial Photography, Lehigh River Basin: Northampton and Lehigh Counties, scale 1"=1,200', developed by Greenhorne and O'Mara, Inc., Greenbelt, MD, April 1996.
56. U.S. Army Corps of Engineers, Philadelphia District, Flood Plain Management Services Branch, Digital Terrain Model (DTM), Carbon County, 5-foot contour accuracy, digital layers include: digital terrain model, transportation, hydrography, spot elevations, and corporate limits, developed by Photogrammetric Data Services, Inc., Sterling, VA, 1990.
57. U.S. Army Corps of Engineers, Philadelphia District, Flood Plain Management Services Branch, Aerial Photography, Carbon County, Scale 1"=2,000', developed by Photogrammetric Data Services, Inc., Sterling, VA, April 1990.

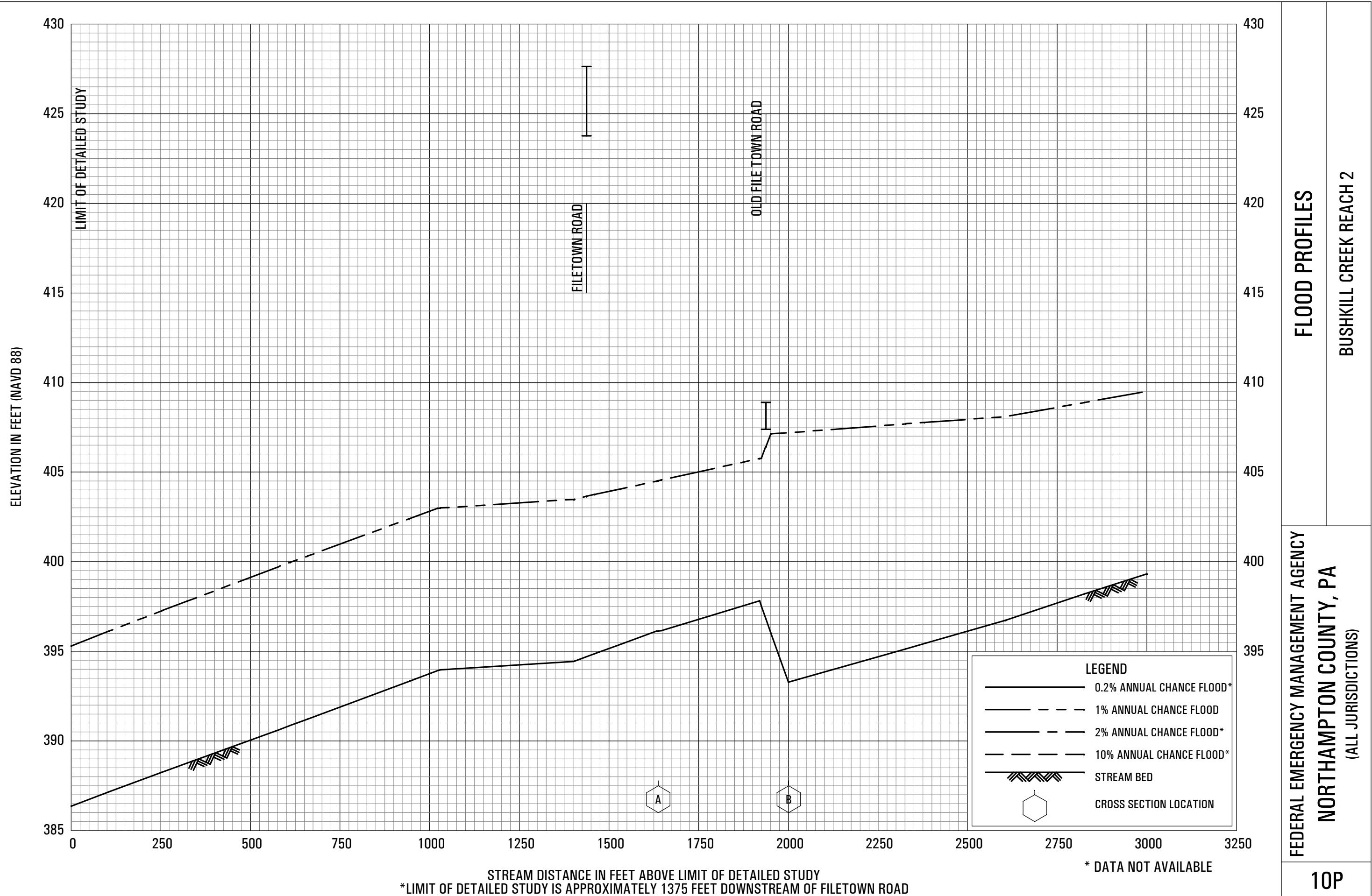

58. U.S. Army Corps of Engineers, Hydrologic Engineering Center, HEC-RAS River Analysis System, Davis, CA, April 1997.
59. U.S. Army Corps of Engineers, Hydrologic Engineering Center, HEC-RAS River Analysis System, Davis, CA, March 2008.
60. U.S. Department of the Interior, Geological Survey, Summary of April 2-4, 2005. Flooding in new Jersey, updated July 13, 2005. Web interface: <http://nj.usgs.gov/special/flood0405/>.
61. Federal Emergency Management Agency, Flood Insurance Study, Bucks County, Pennsylvania (All Jurisdictions), Washington, D.C., April 2, 2004.
62. Federal Emergency Management Agency, Flood Insurance Study, Carbon County (All Jurisdictions), Pennsylvania, Washington, D.C., June 3, 2002
63. Federal Emergency Management Agency, Flood Insurance Study, Lehigh County (All Jurisdictions), Pennsylvania, Washington, D.C., July 16, 2004.
64. Federal Emergency Management Agency, Flood Insurance Study, Monroe County (All Jurisdictions), Pennsylvania, Washington, D.C., May 2, 2013.
65. Federal Emergency Management Agency, Flood Insurance Study, Warren County (All Jurisdictions), New Jersey, Washington, D.C., September 29, 2011.

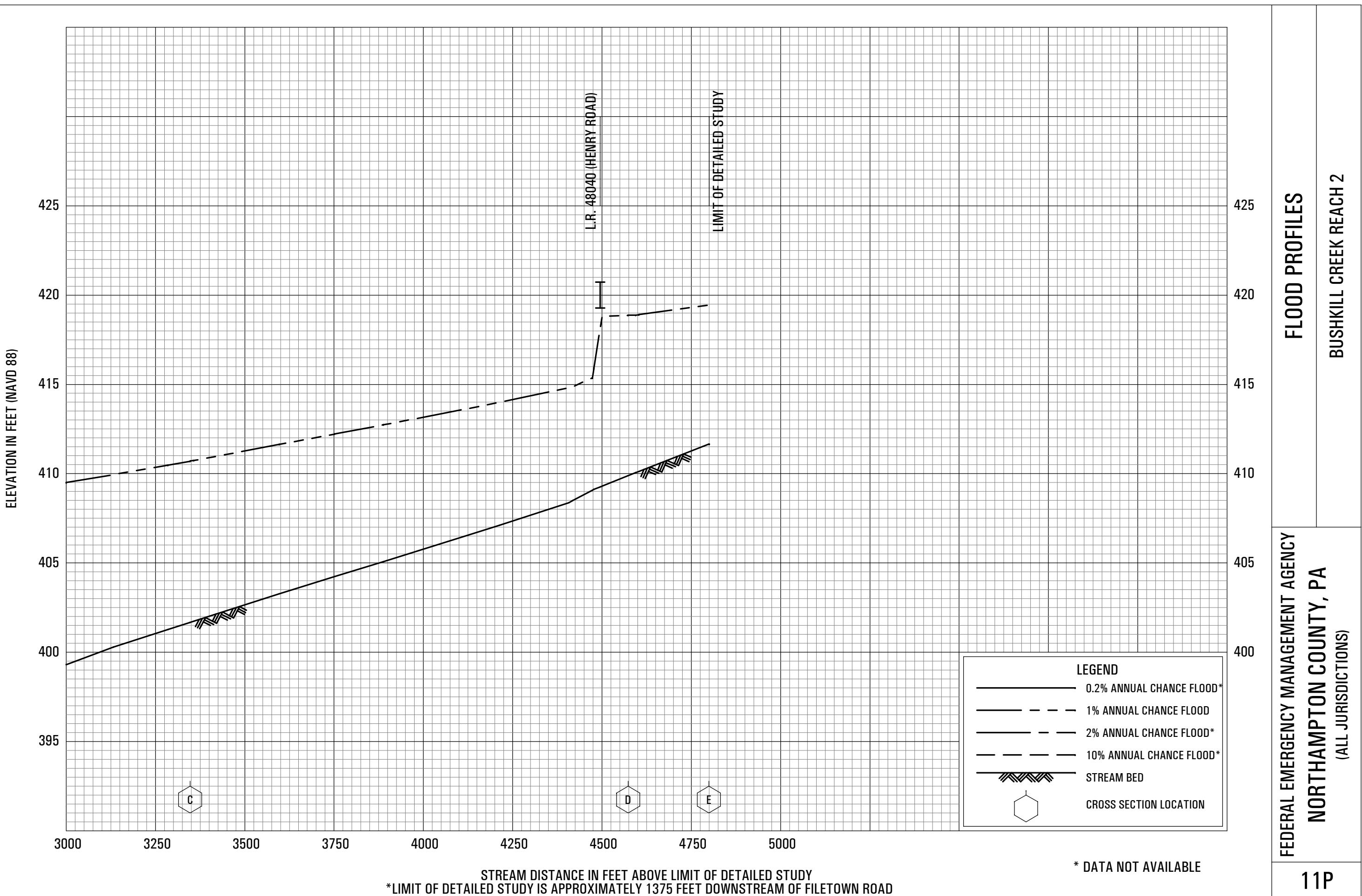


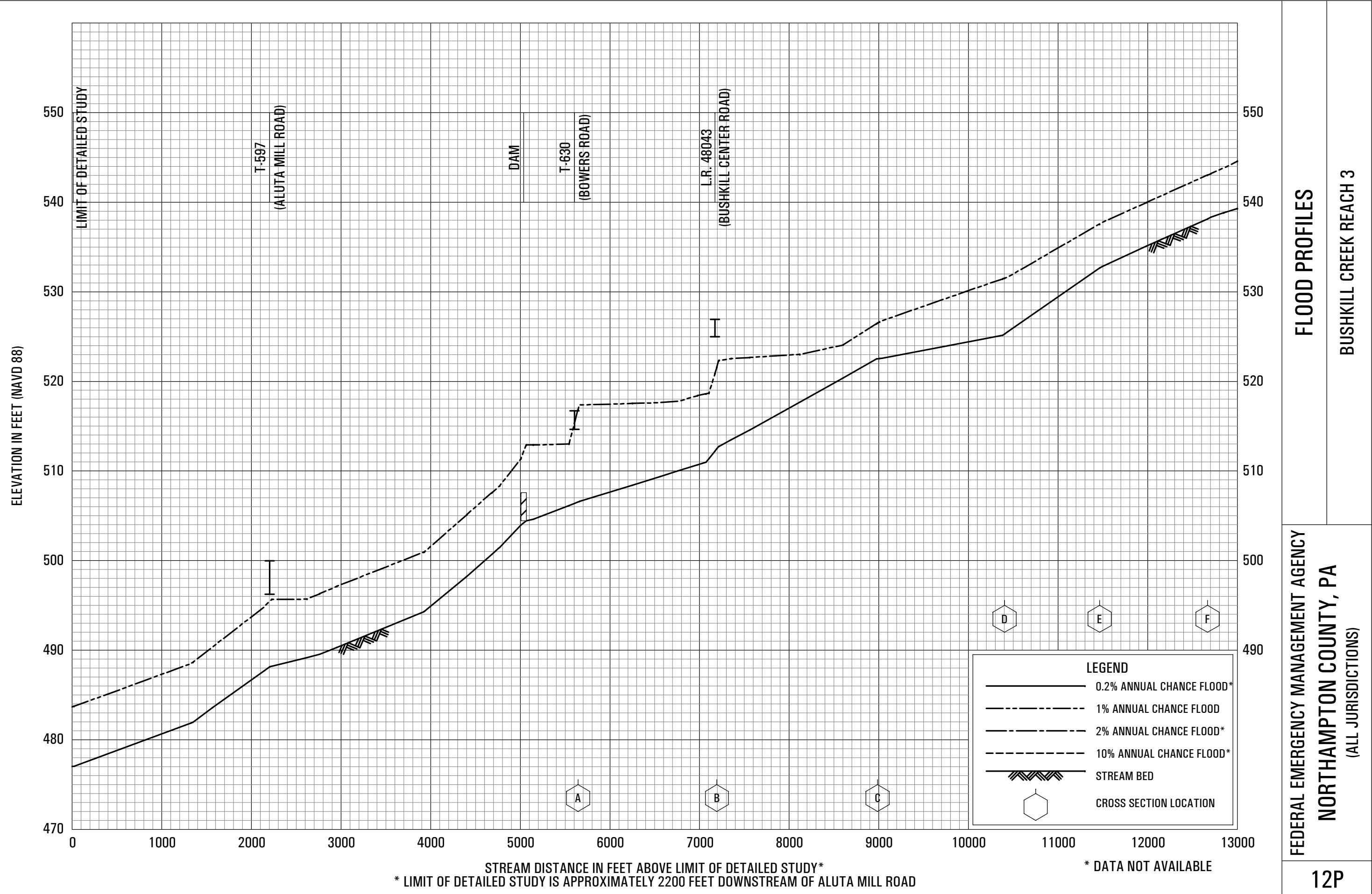



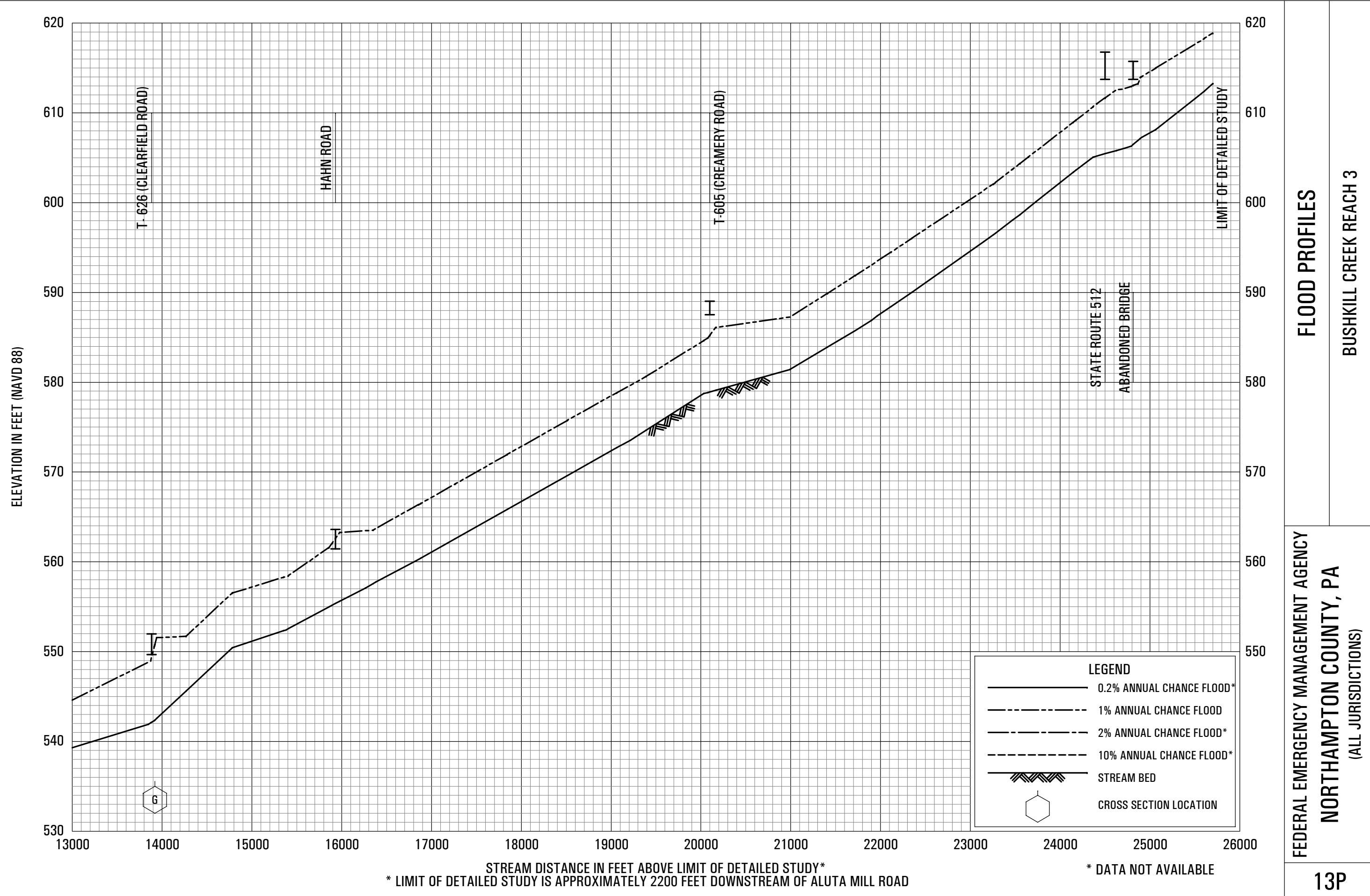



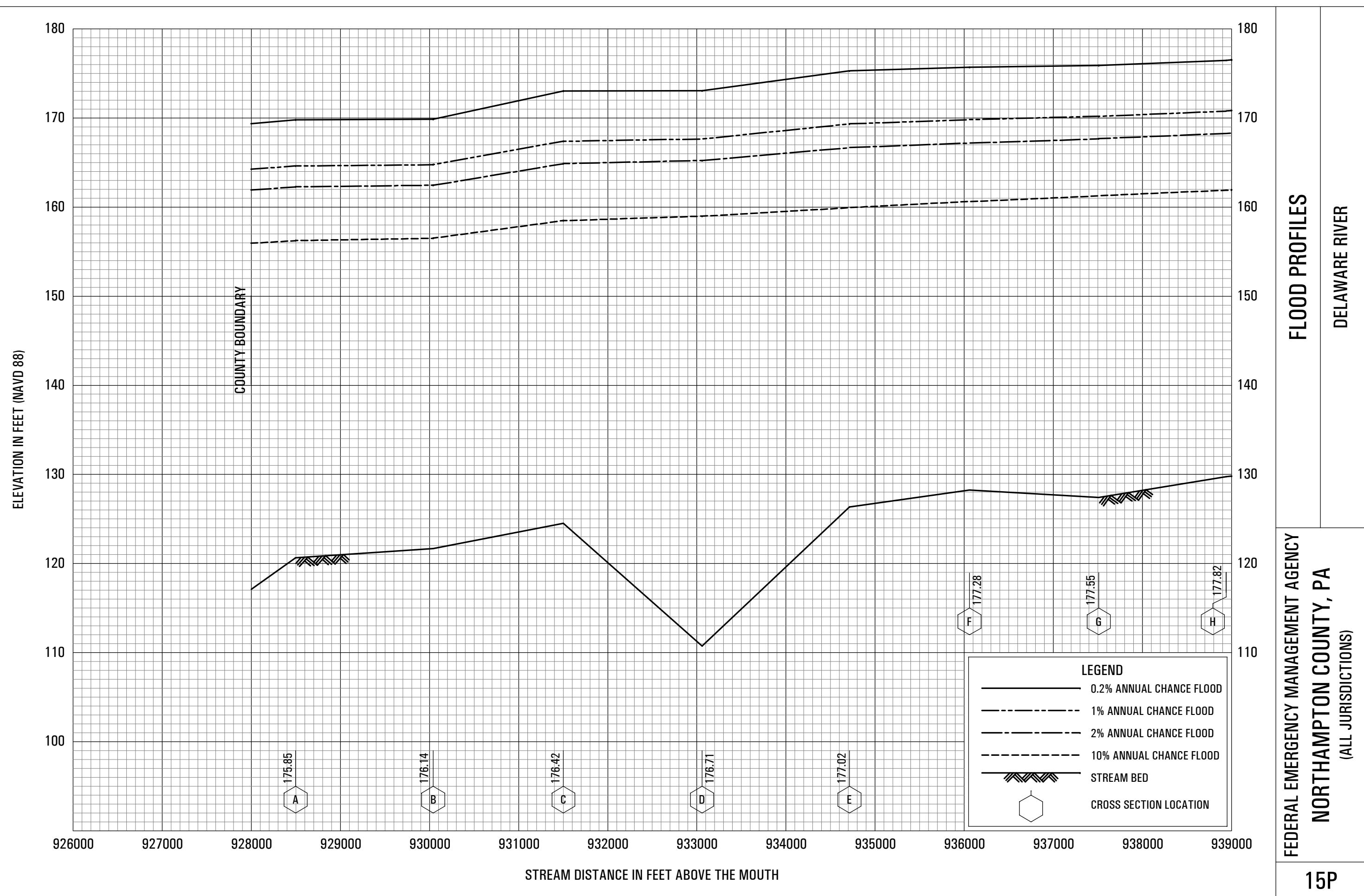



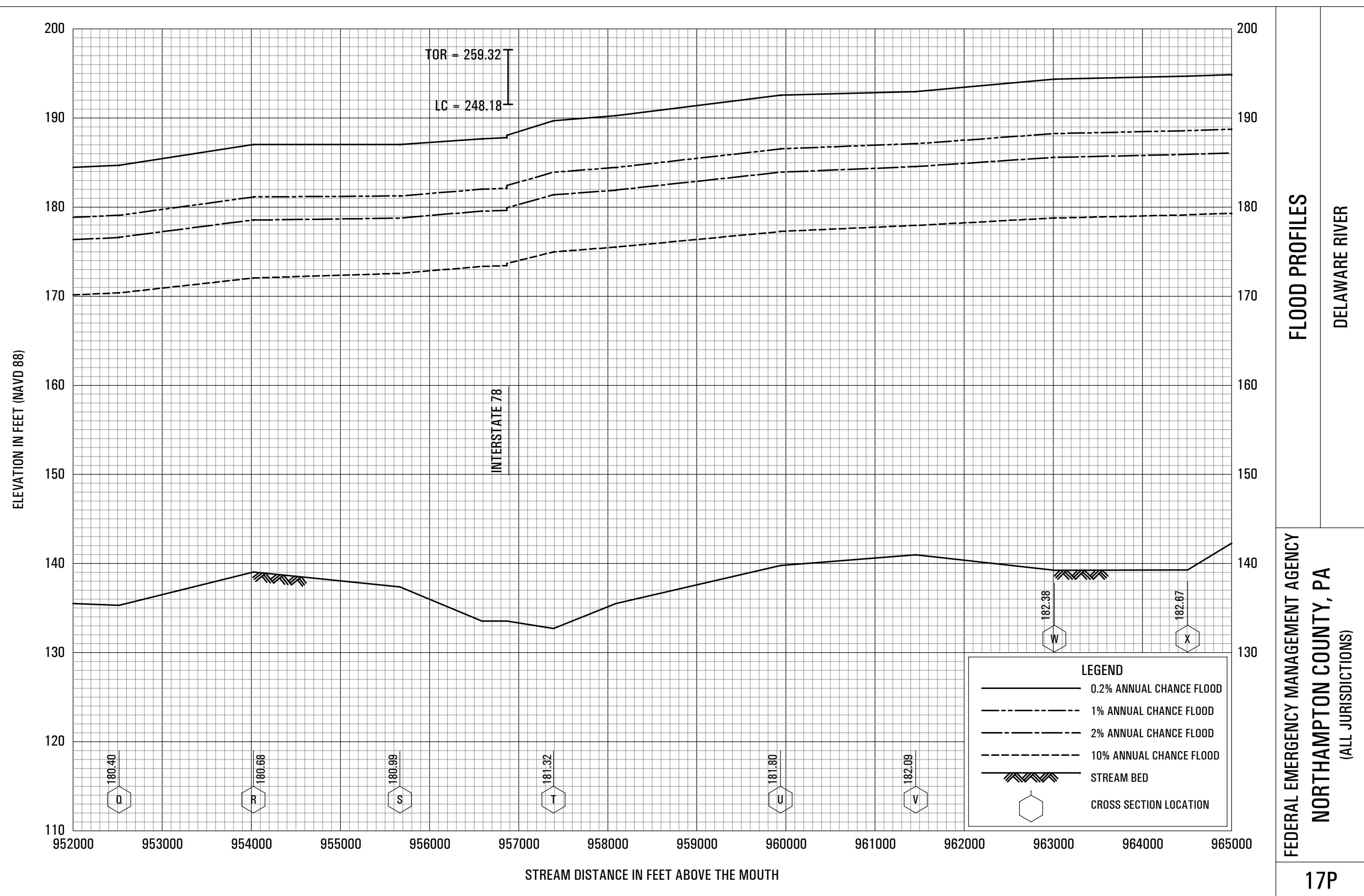



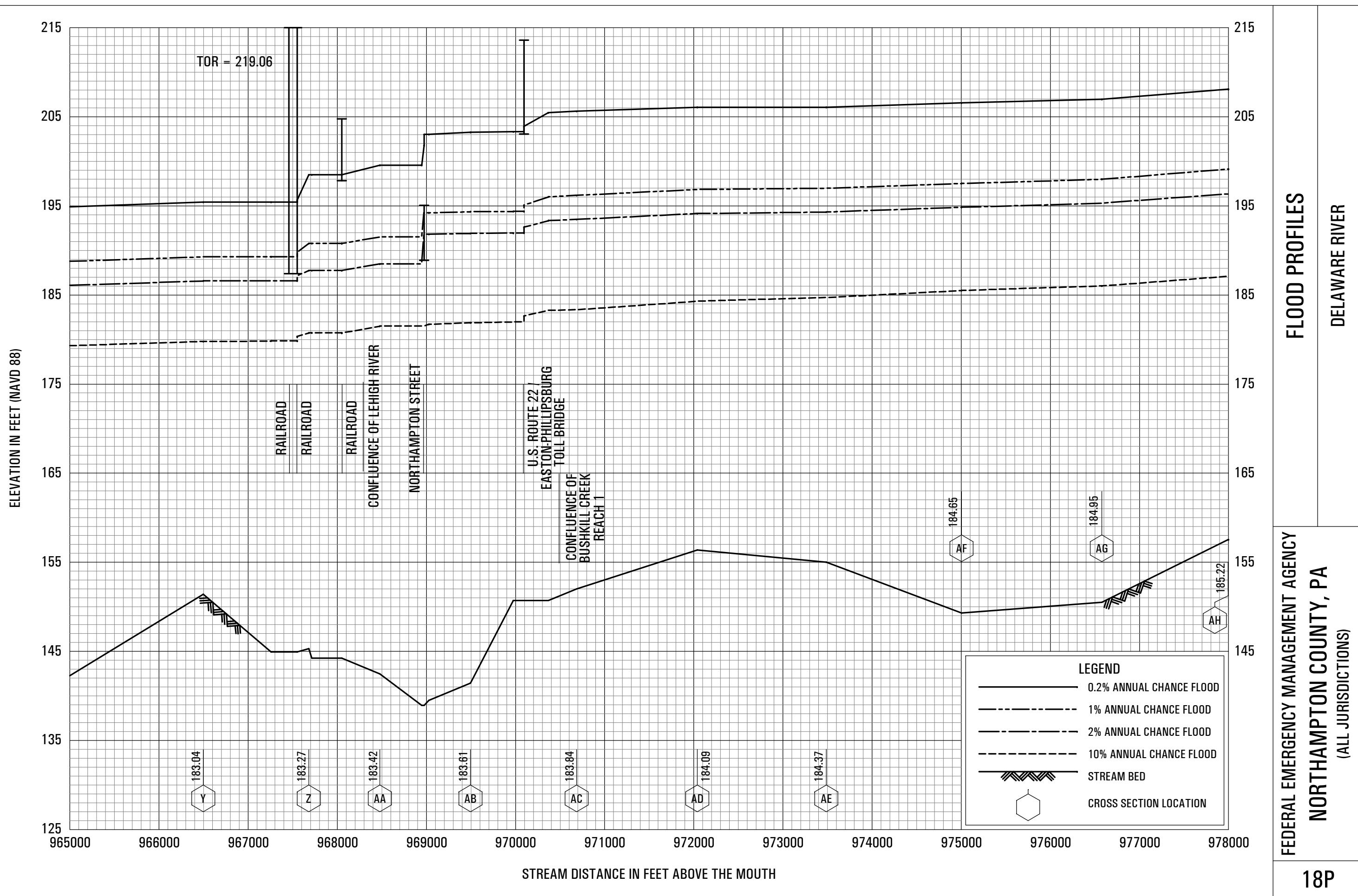



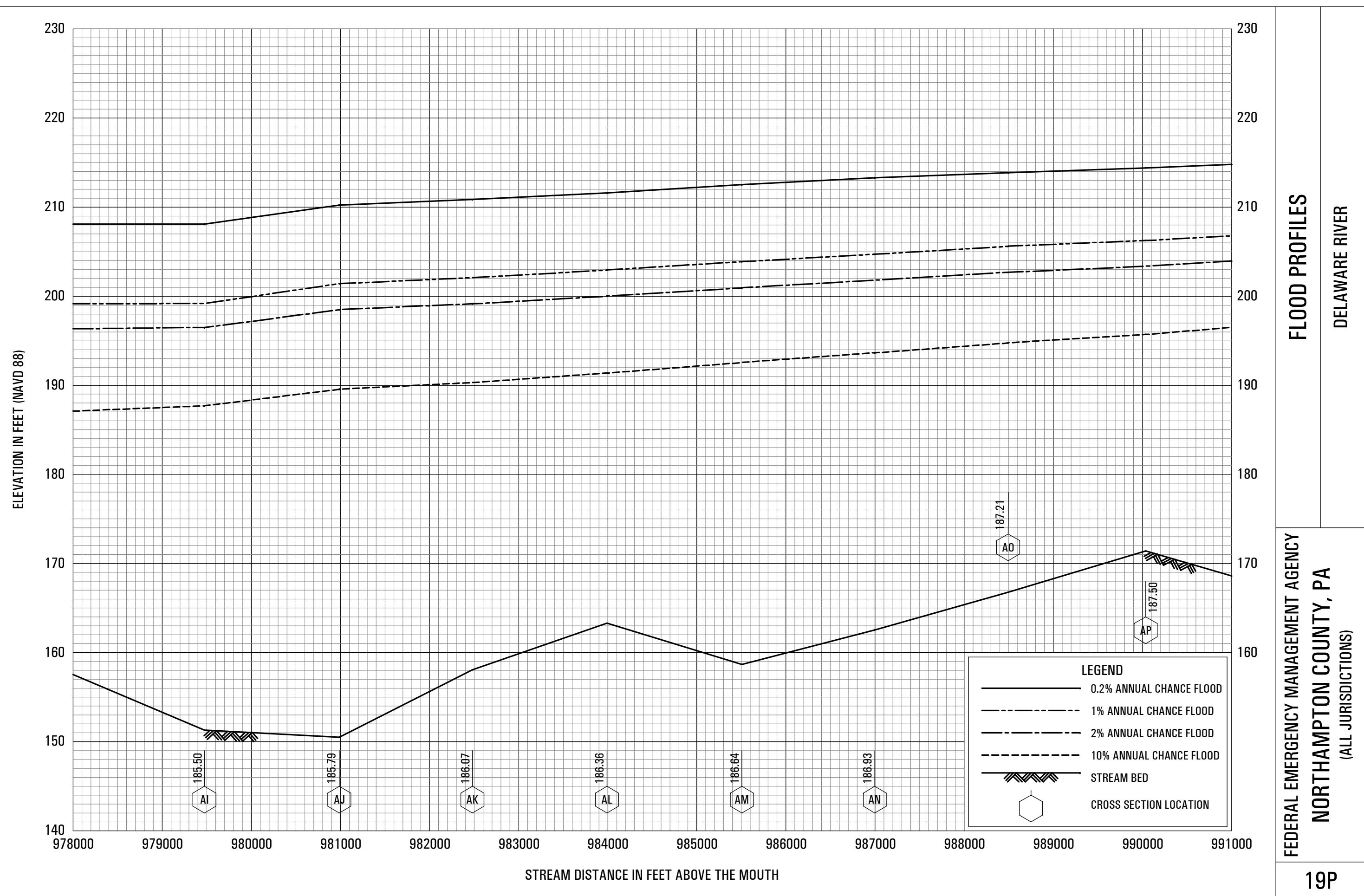


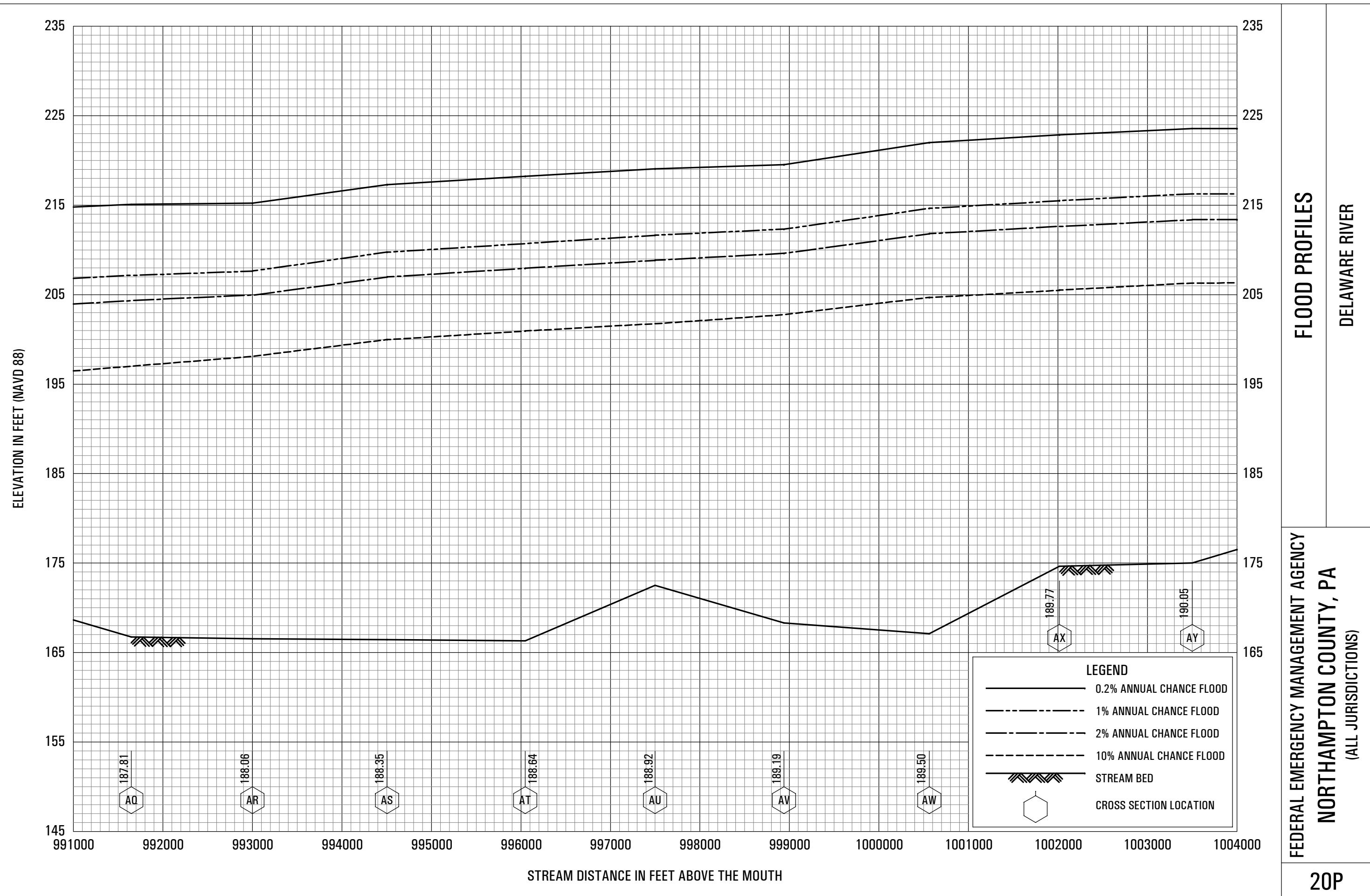



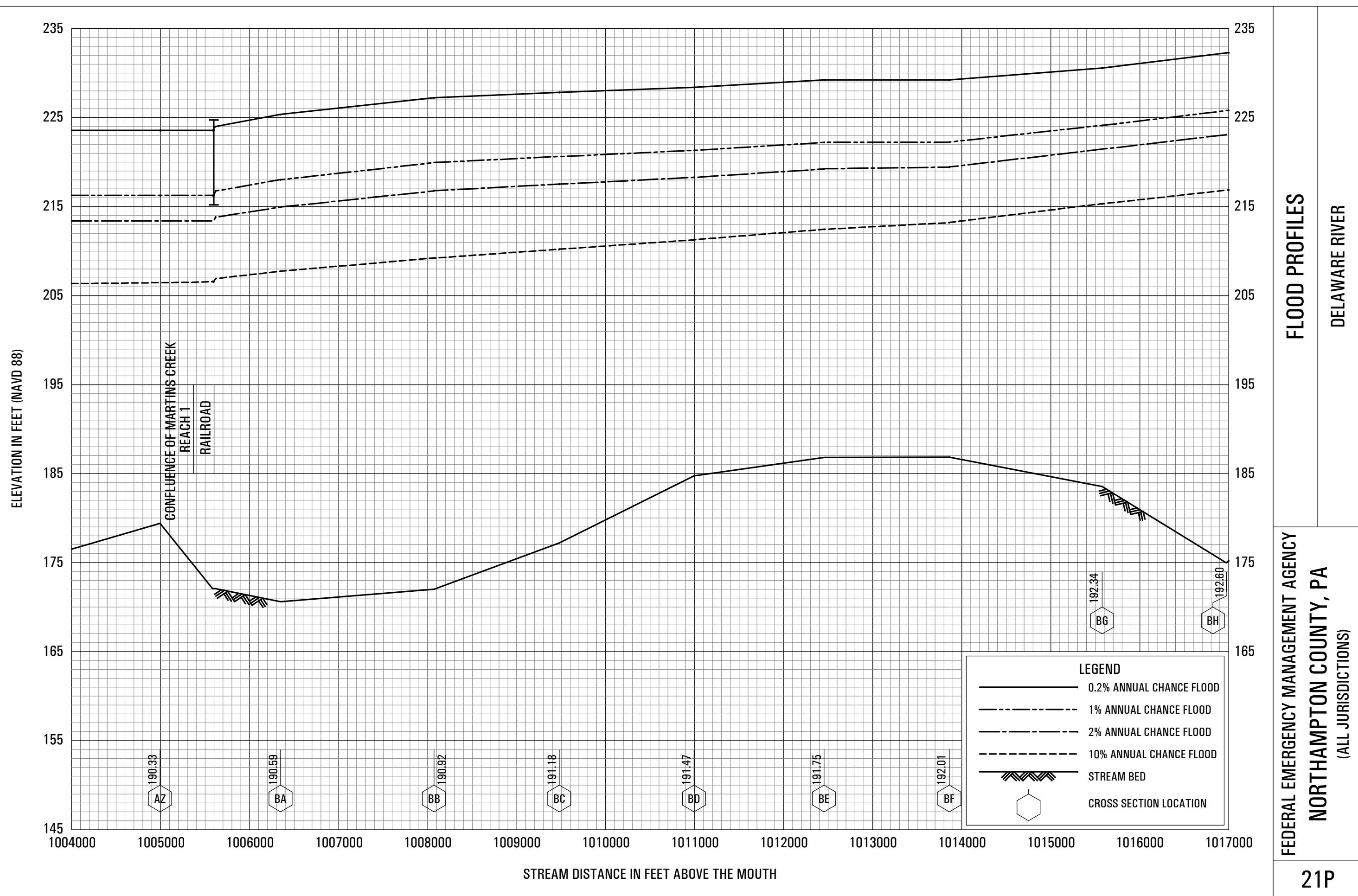


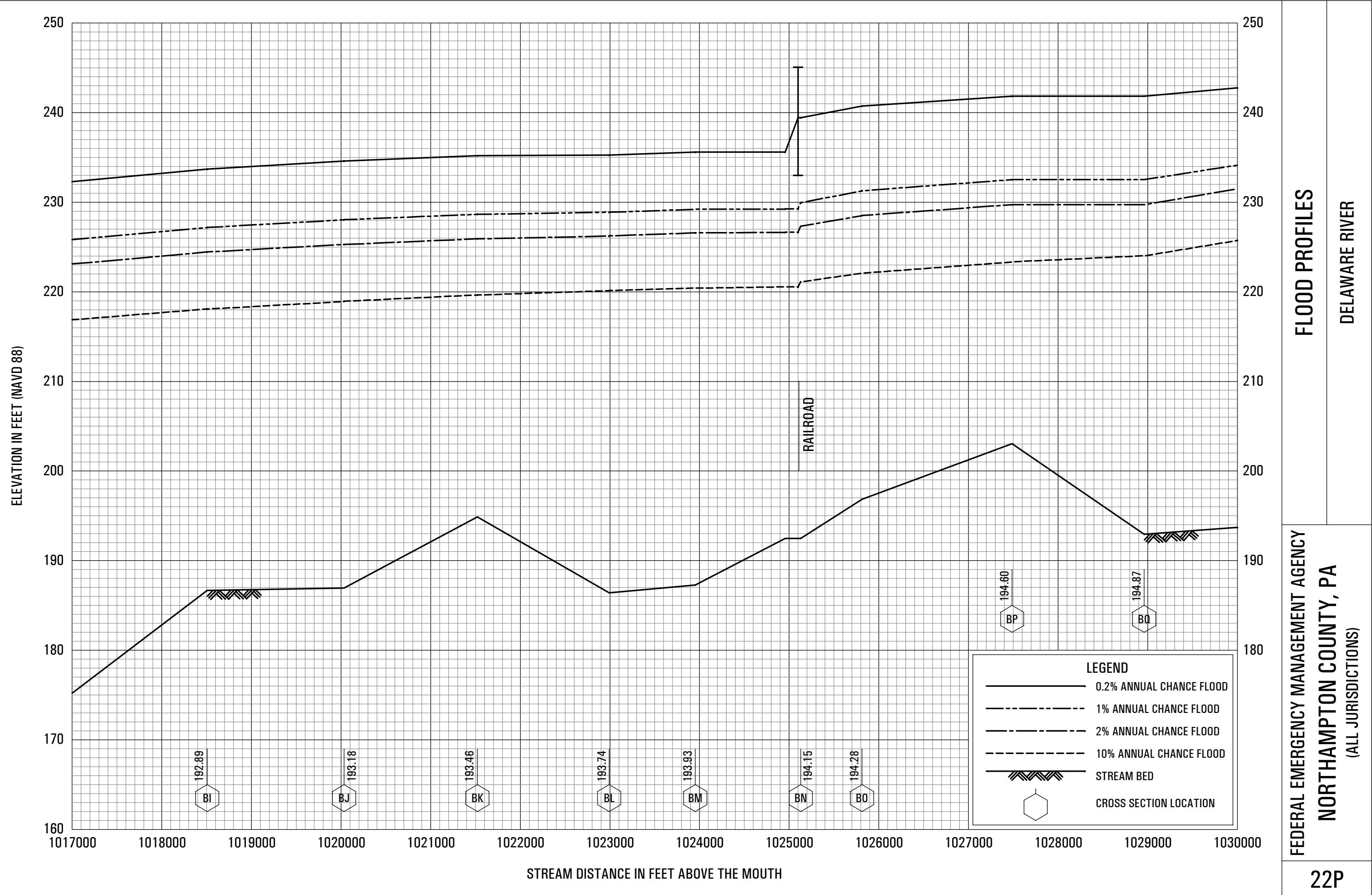



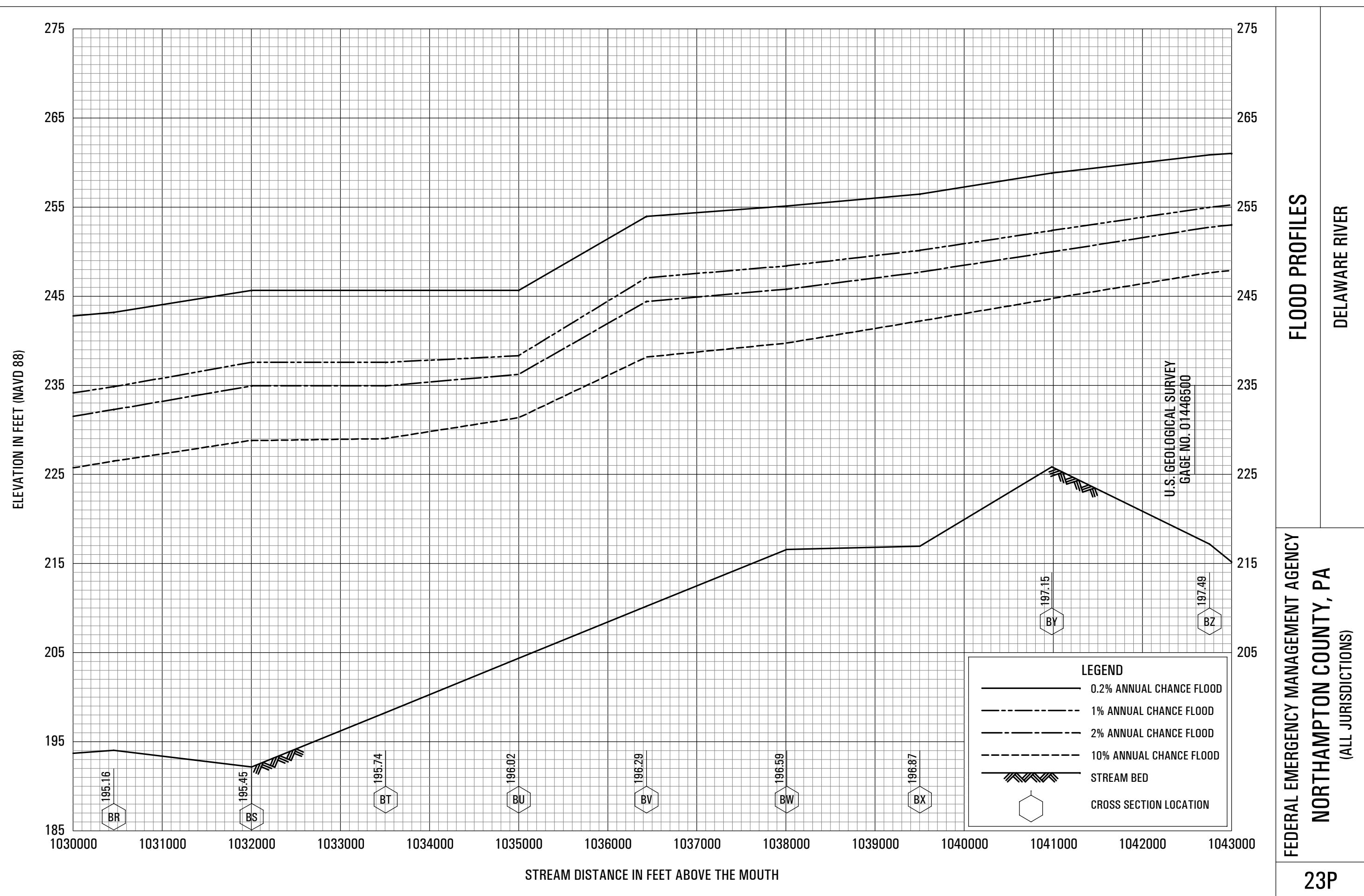



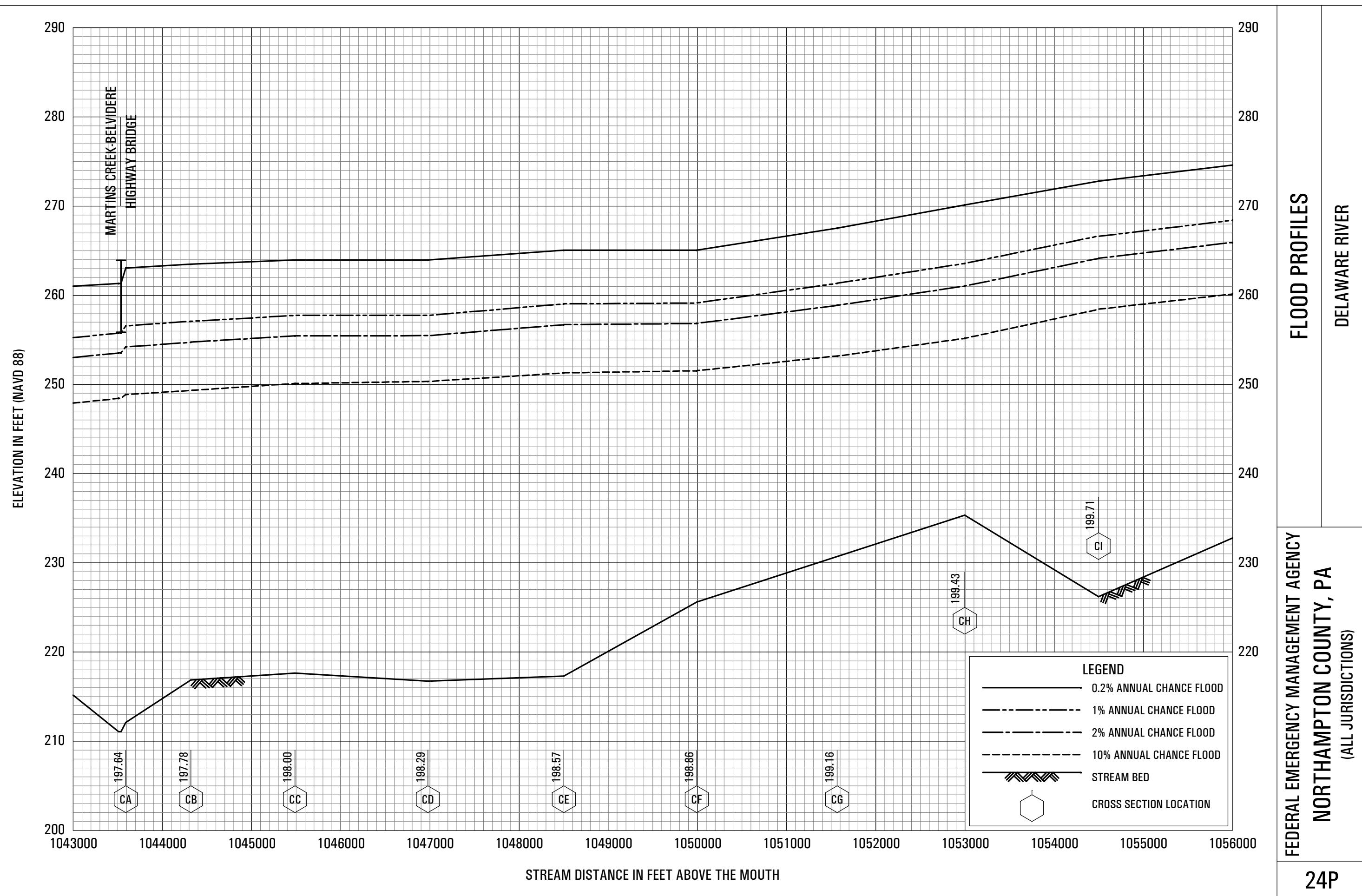



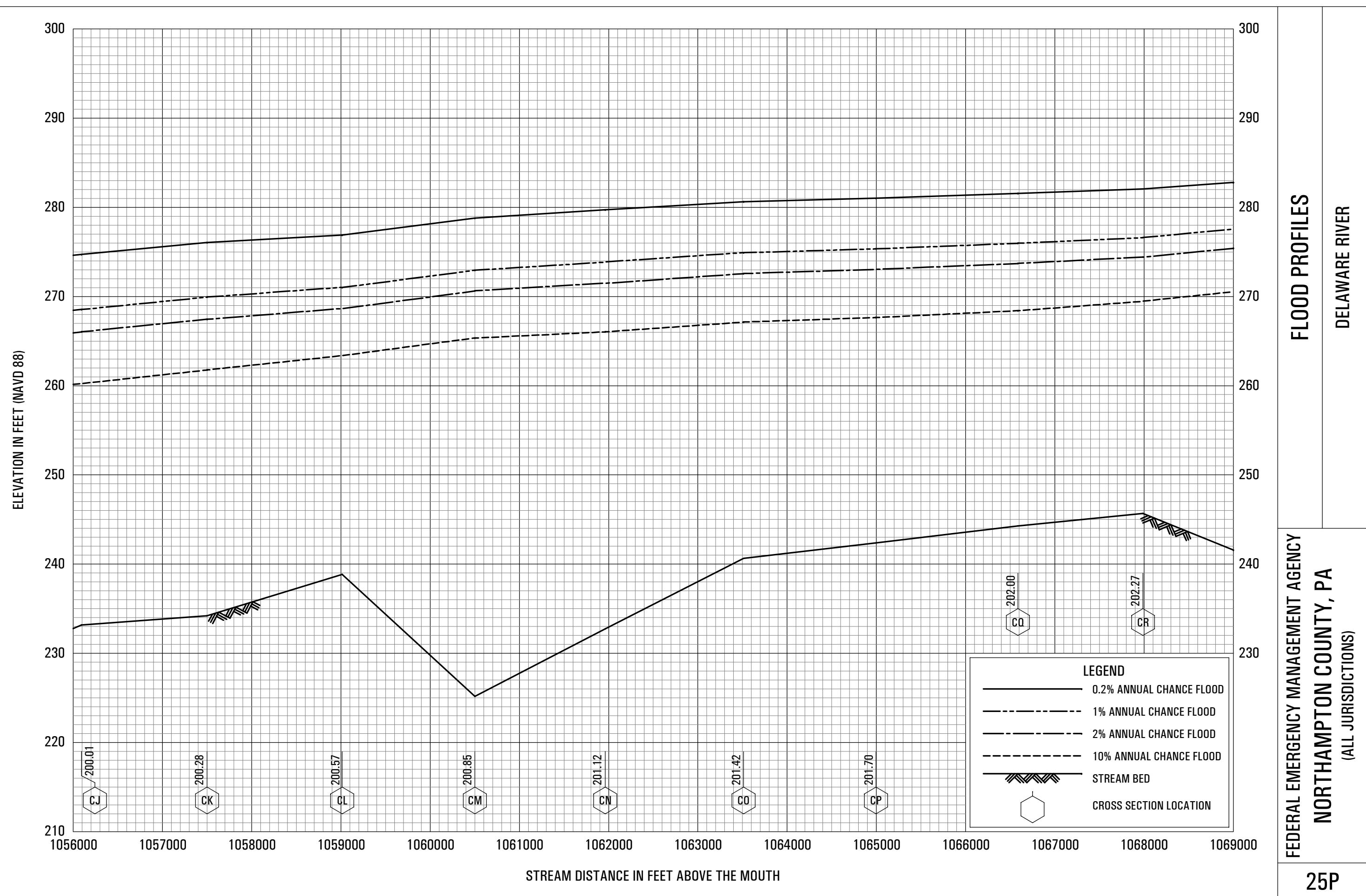



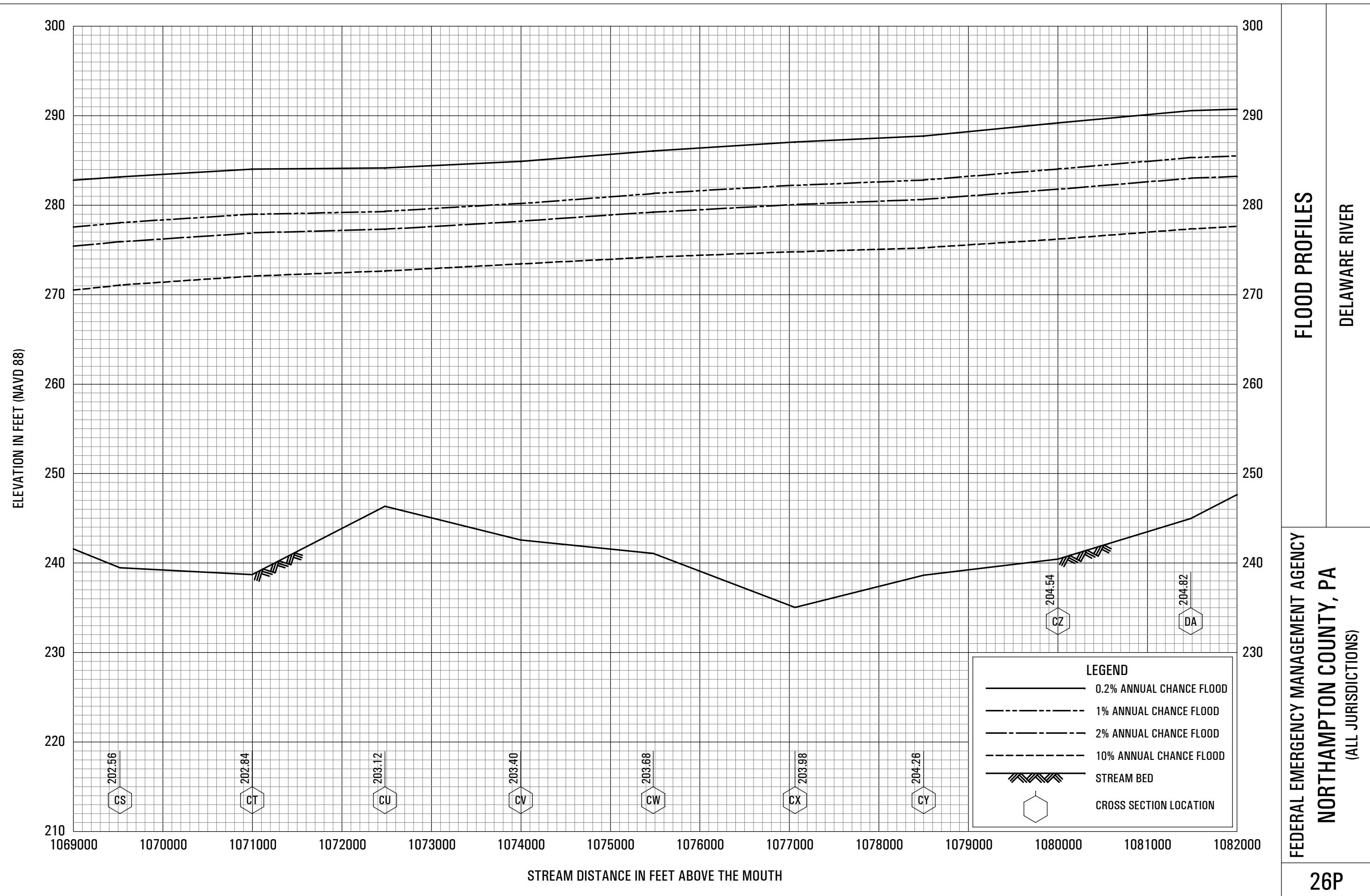



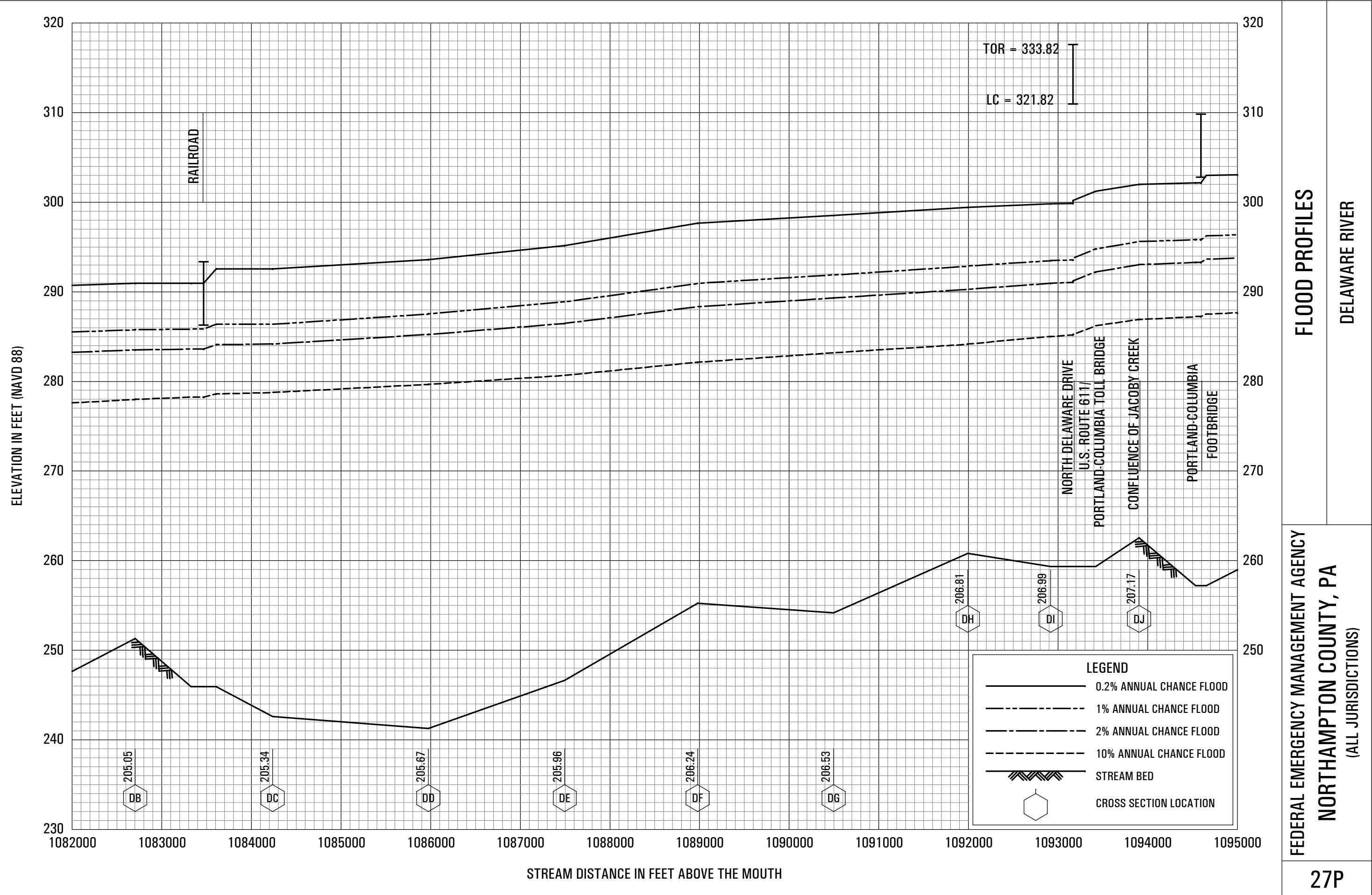



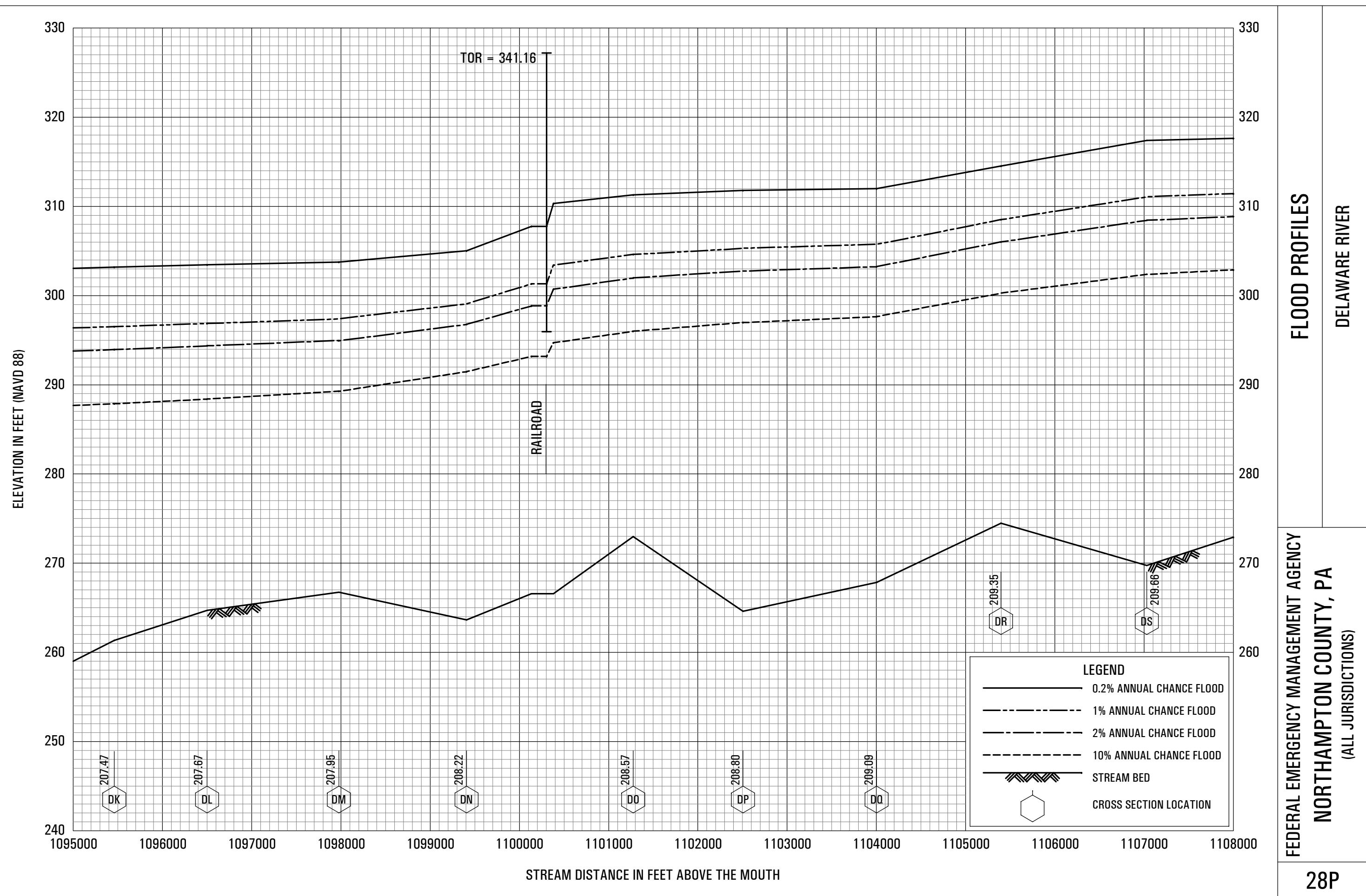



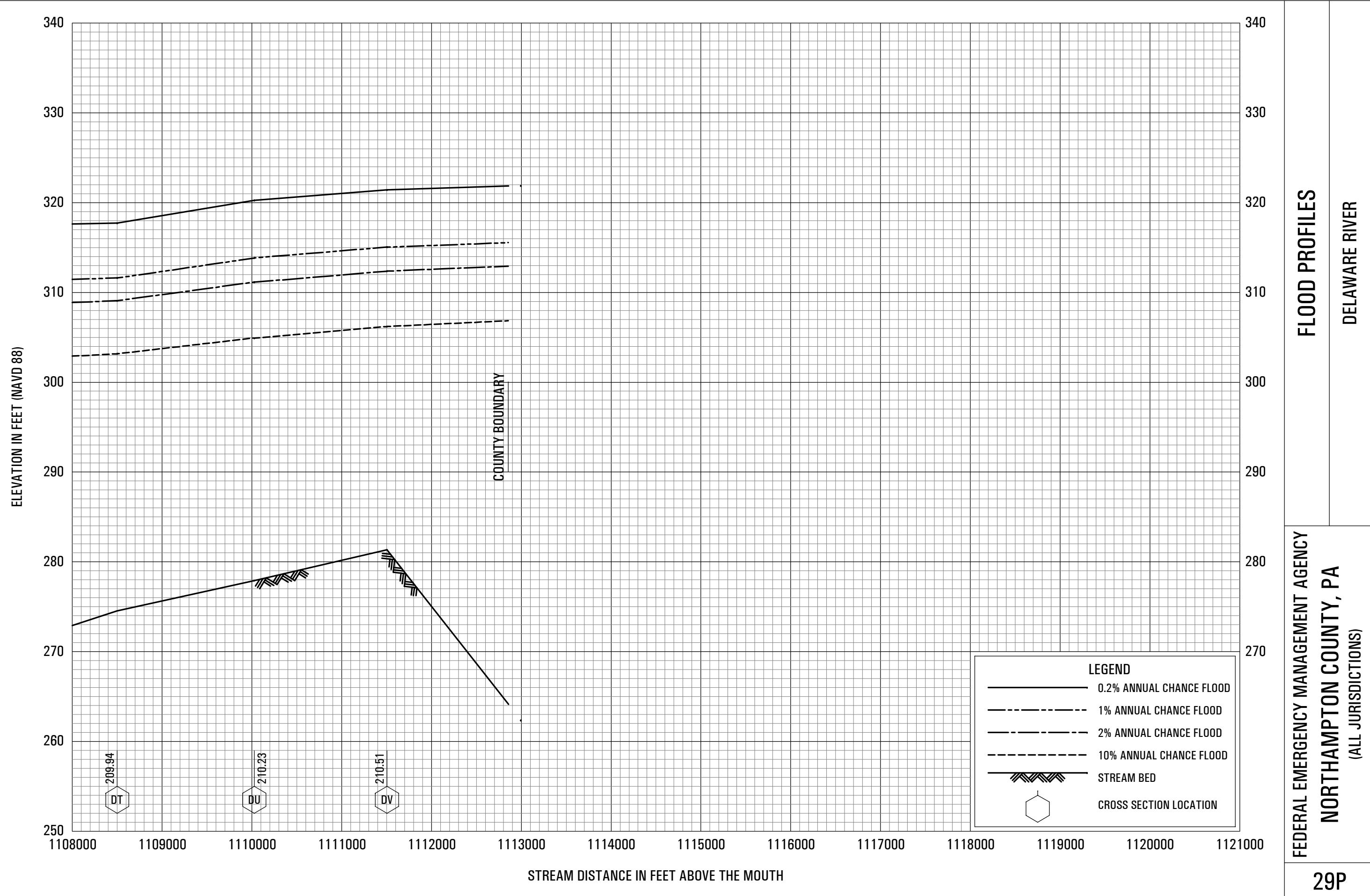














## **Appendix F**

### **50-Year Flood Modeling**

In addition to the 100-year flood modeling and low flow regimes described in this report, 50-year flood event was also modeled as the suburban flood modeling requirement per DEP requirements. The 5-year flood event was considered to be 497 cfs according to Stream Stats data, as reported previously. Per PADEP chapter 105 any culver design should consider the following criteria:

*(a) Bridges and culverts shall be designed and constructed in accordance with the following criteria:*

*(1) The structure shall pass flood flows without loss of stability.*

*(2) The structure may not create or constitute a hazard to life or property, or both.*

*(3) The structure may not materially alter the natural regimen of the stream.*

*(4) The structure may not so increase velocity or direct flow in a manner which results in erosion of stream beds and banks.*

*(5) The structure may not significantly increase water surface elevations.*

*(6) The structure shall be consistent with local flood plain management programs.*

*(b) In determining flood flows and frequencies for purposes of this subchapter, hydrologic analysis shall be by methods generally accepted in the engineering profession.*

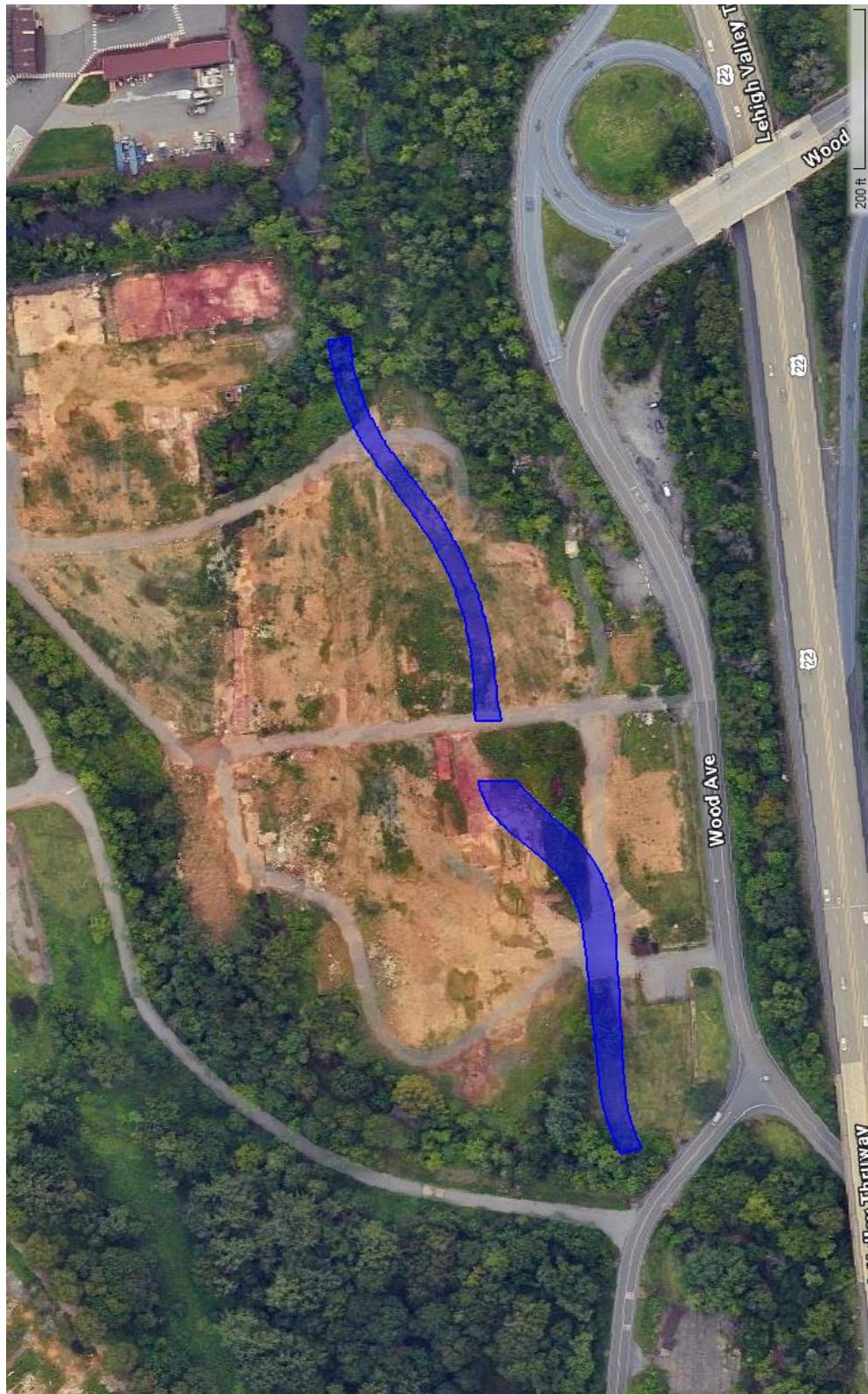
*(c) The general criteria for design flows are as follows:*

*(1) Rural area-25-year frequency flood flow.*

*(2) Suburban area-50-year frequency flood flow.*

*(3) Urban area-100-year frequency flood flow.*

*(d) The determination of flood flows for design shall be made with reasonable consideration of development which may alter the runoff characteristics of the watershed during the anticipated life of the structure. Specific design requirements in subsection (c) may be varied to fit the conditions at the site and the requirements of flood plain management regulations and ordinances.*


*(e) The structures shall pass the 100-year frequency flood with less than a 1.0-foot increase in the natural unobstructed 100-year water surface elevation, except where the structure would be located in a floodway which is delineated on a FEMA map, in which case no increase in the 100-year water surface elevation will be permitted. Exceptions to this criteria may be approved by the Department if the applicant prepares a risk assessment which demonstrates, and the Department finds, that the structure will not significantly increase the flooding threat to life and property or the environment, and if applicable, is consistent with municipal floodplain management programs adopted under the National Flood Insurance Program and a FEMA Flood Insurance Study. This information may be obtained from the Department of Community Affairs, Floodplain Management Division, Forum Building, Harrisburg, Pennsylvania 17120.*

*25 Pa. Code § 105.161*

*The provisions of this §105.161 adopted August 11, 1978, effective 8/28/1978, 8 Pa.B. 2229; amended September 26, 1980, effective 9/27/1980, 10 Pa.B. 3843; amended October 11, 1991, effective 10/12/1991, 21 Pa.B. 4911.*

*The provisions of this §105.161 amended under the Dam Safety and Encroachments Act (32 P. S. §§ 693.1-693.27); The Clean Streams Law (35 P. S. §§ 691.1-691.1001); section 7 of the act of June 14, 1923 (P. L. 704, No. 294) (32 P. S. § 597); sections 514, 1901-A, 1908-A, 1917-A and 1920-A of The Administrative Code of 1929 (71 P. S. §§ 194, 510-1, 510-8, 510-17 and 510-20); and the Flood Plain Management Act (32 P. S. §§ 679.101-679.601).*

All the above-mentioned criteria are not only met for 50-year but for 100-year flood event. The following sections present the plan view, profile, sections, output table, and warning summary of the 50-year flood modeling.



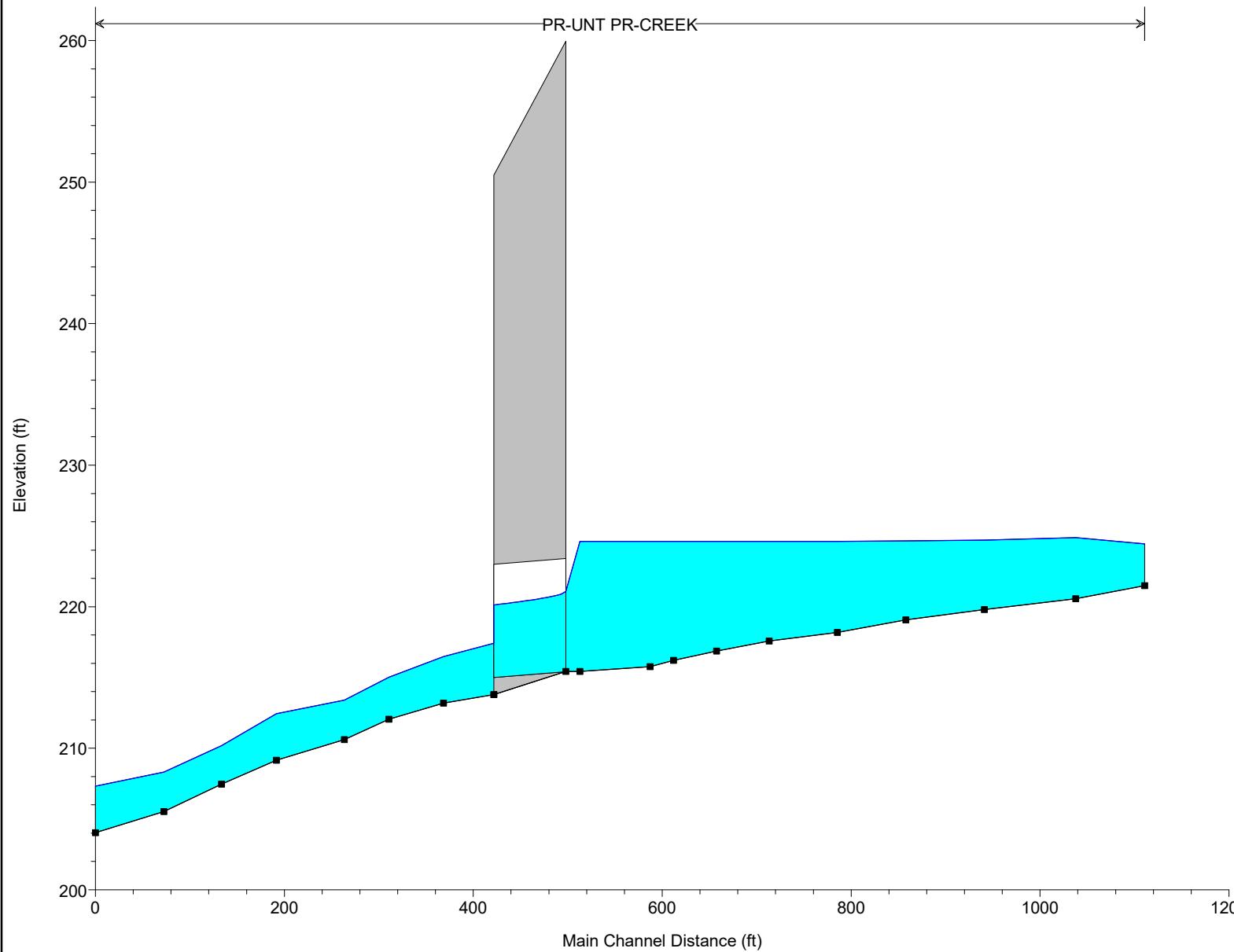

50-year inundation boundary (floodplain)

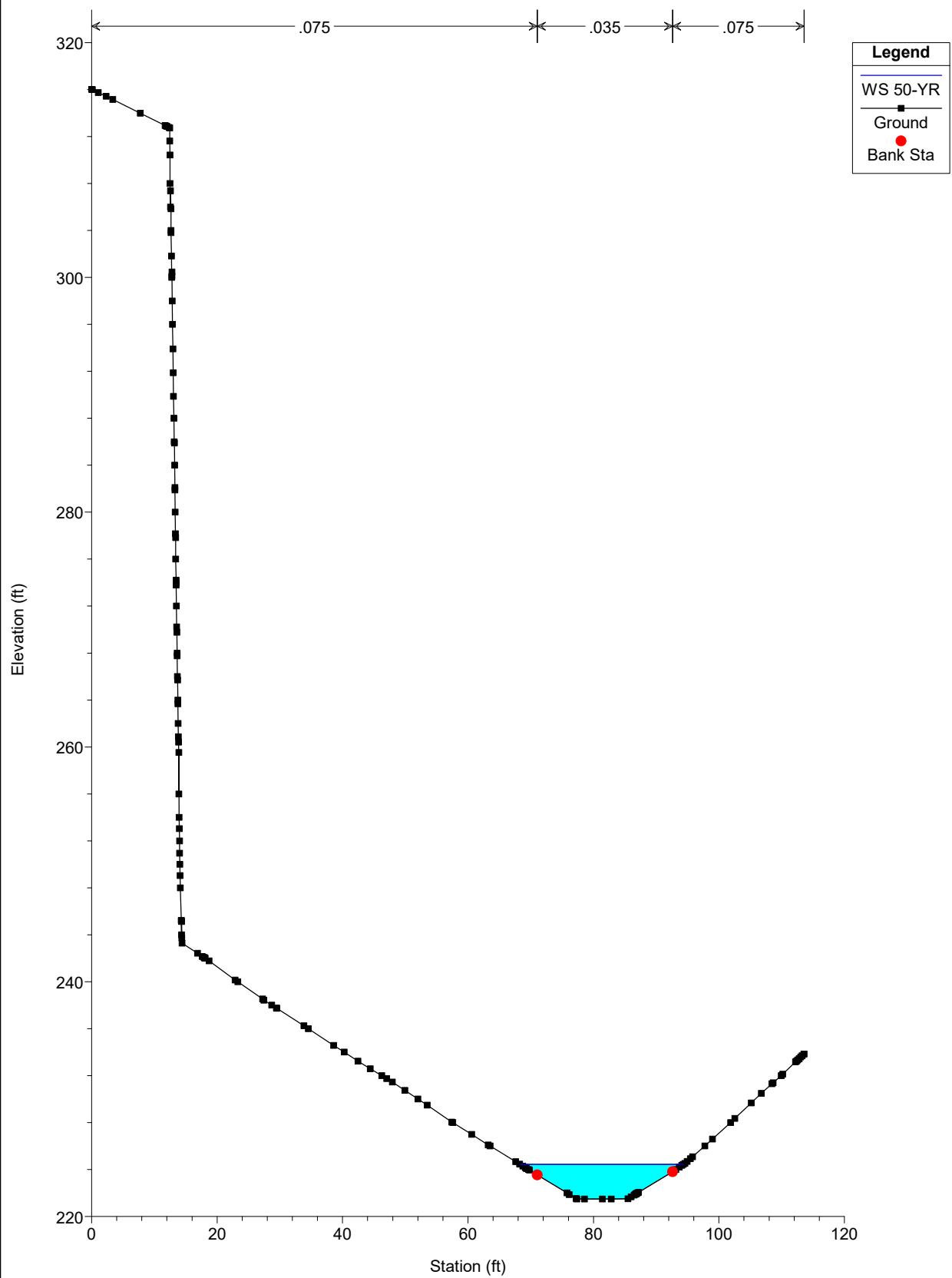


50-year water surface elevation

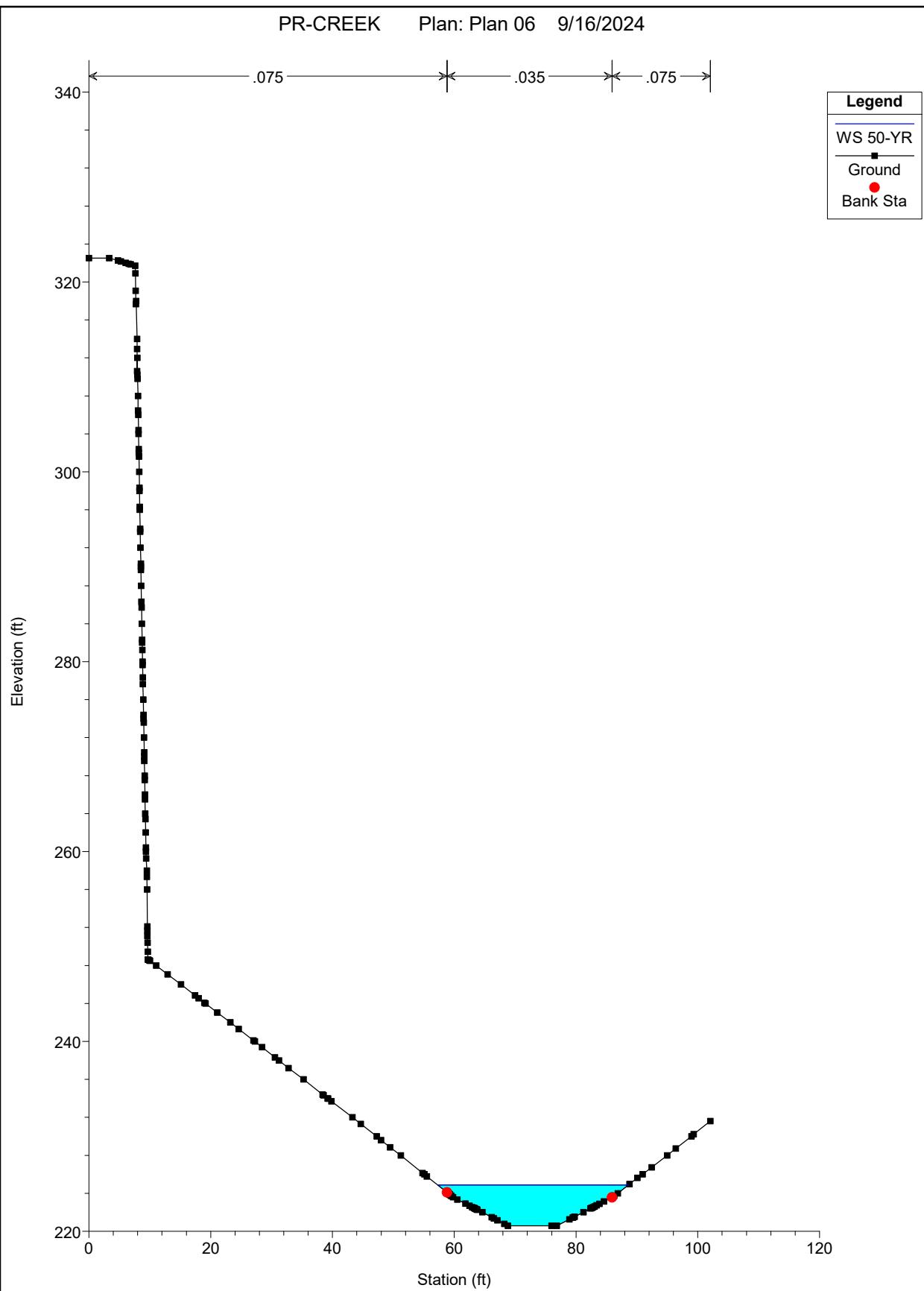


5- year bed velocity (ft/sec)

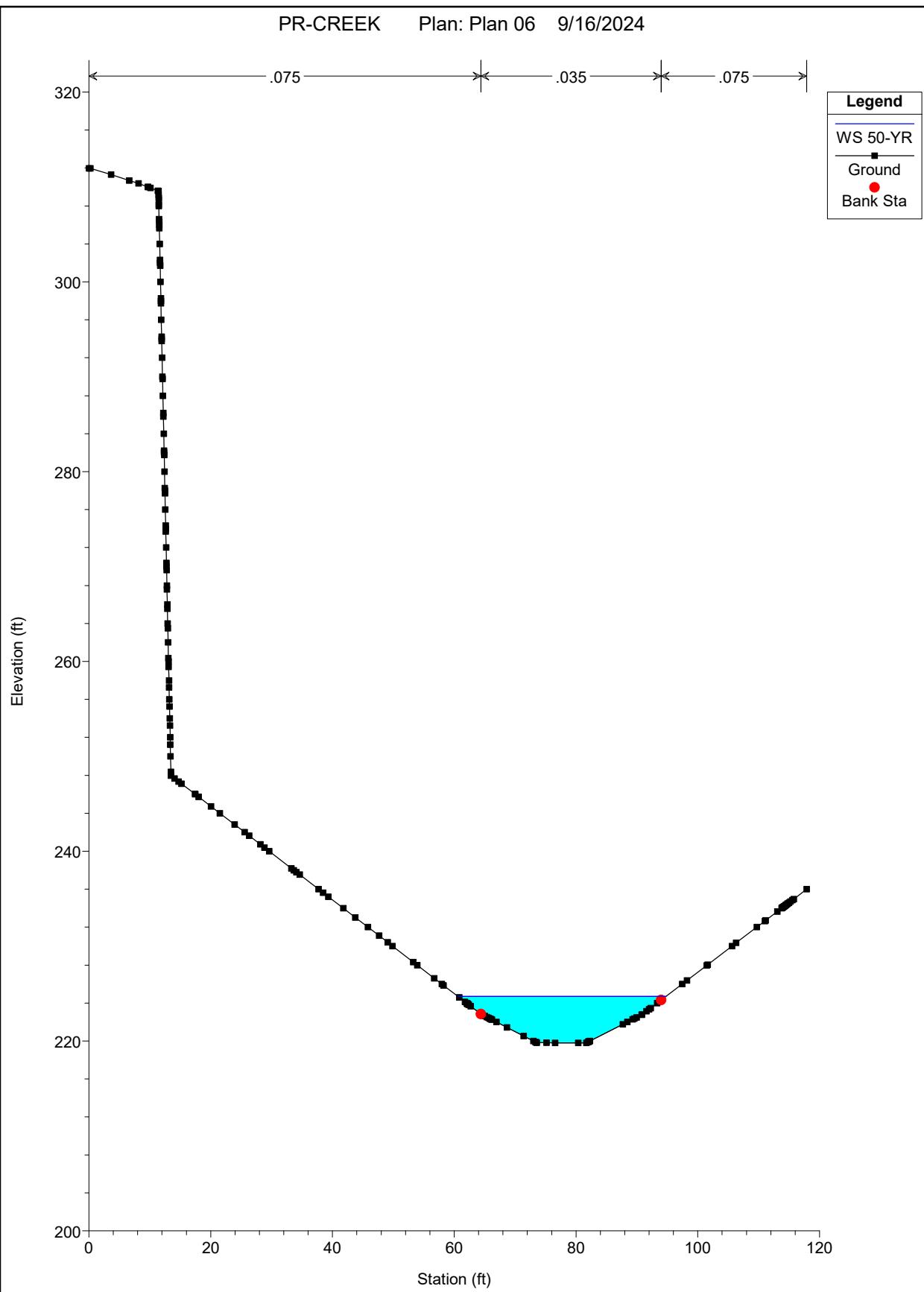




50-year flow depth (ft)

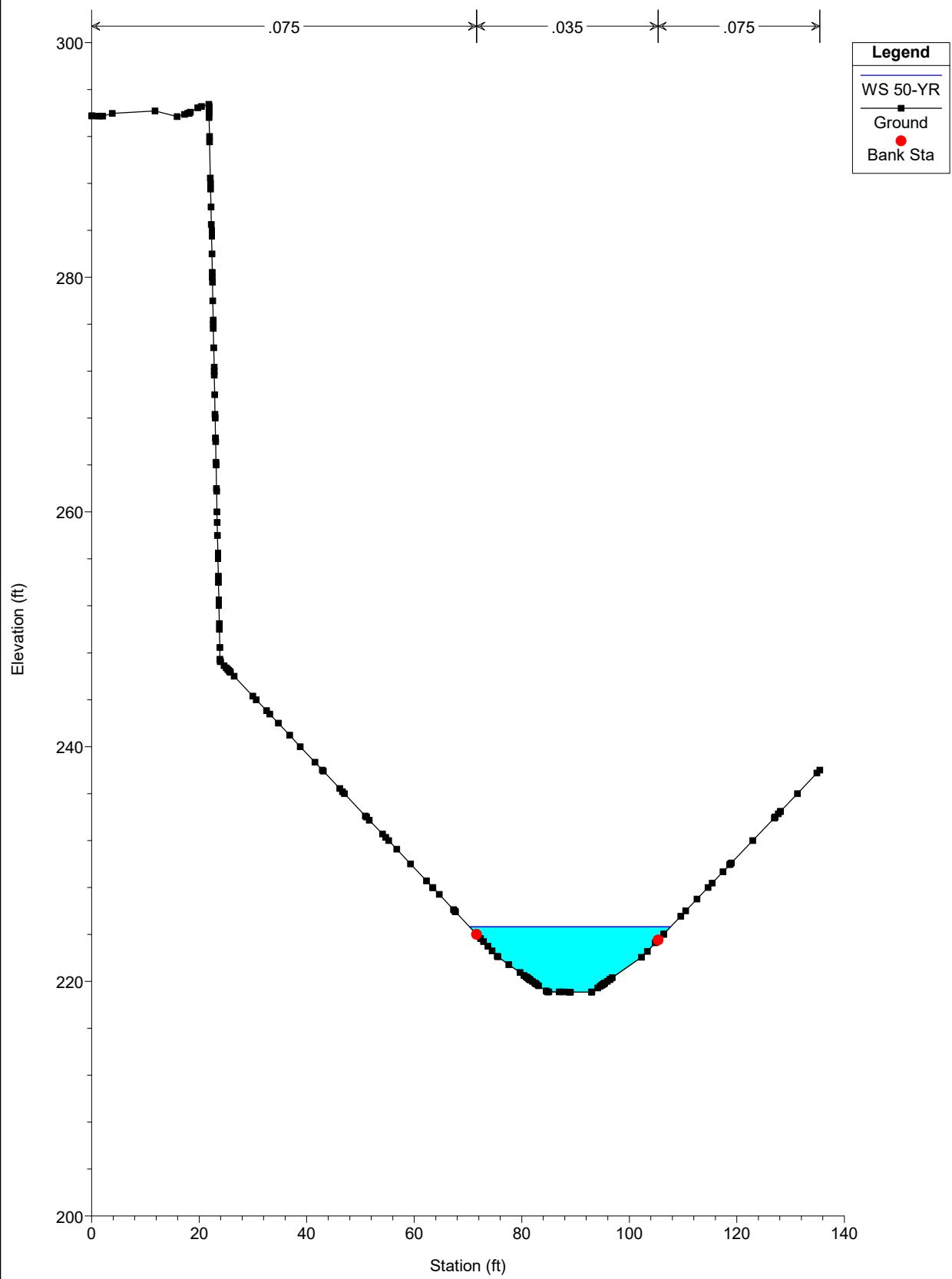
PR-CREEK Plan: Plan 06 9/16/2024


PR-UNT PR-CREEK

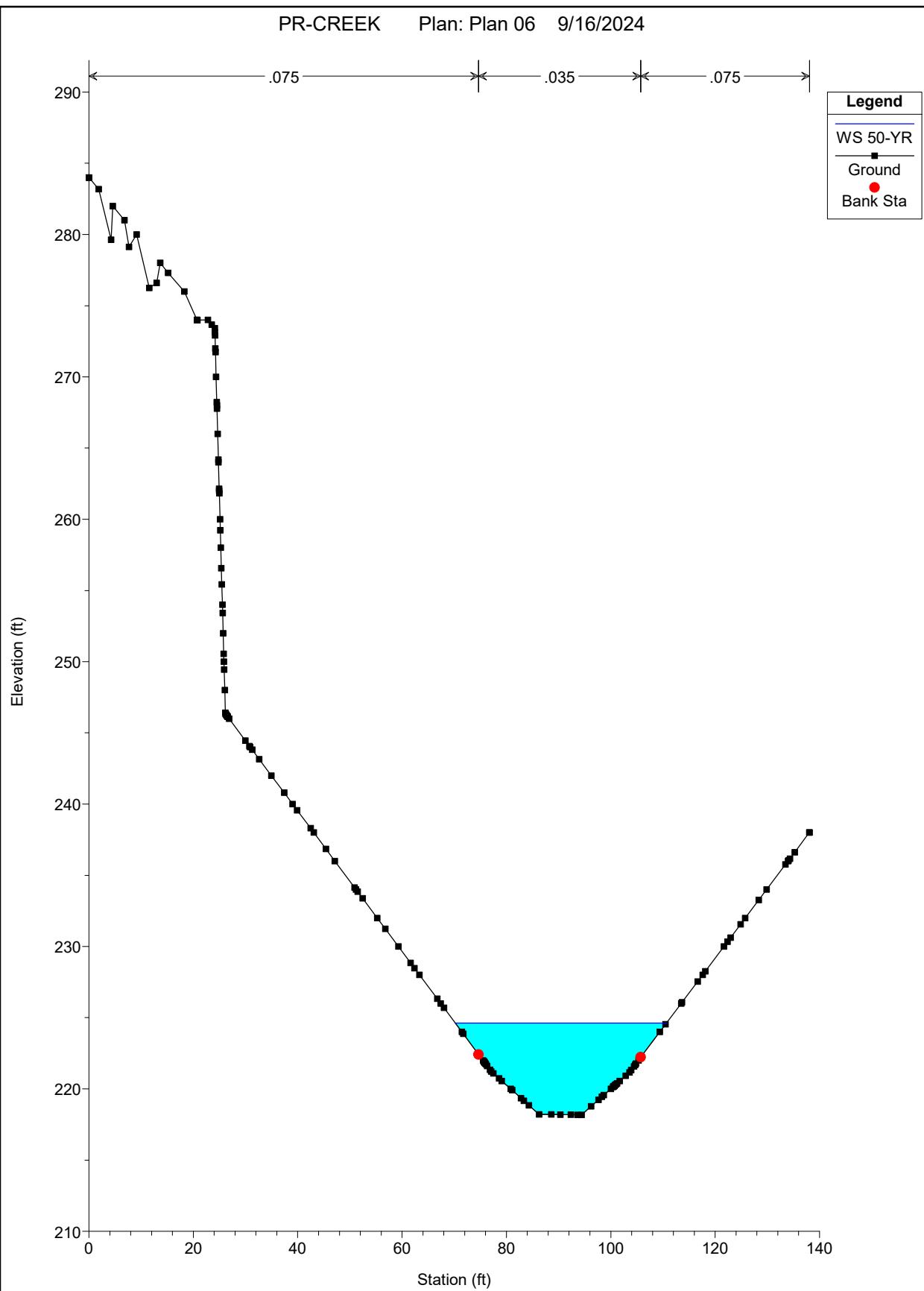
| Legend   |
|----------|
| WS 50-YR |
| Ground   |



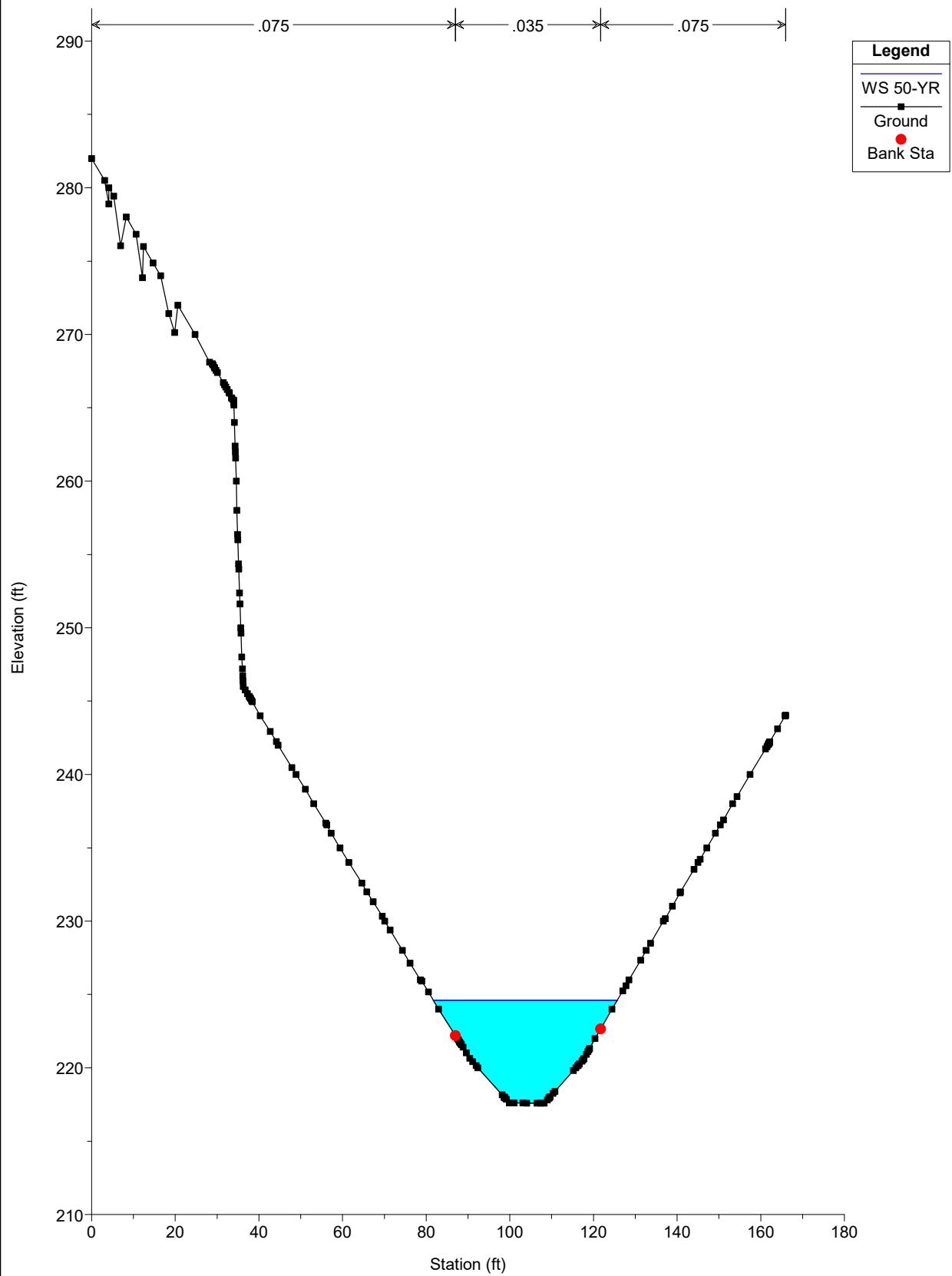




PR-CREEK Plan: Plan 06 9/16/2024

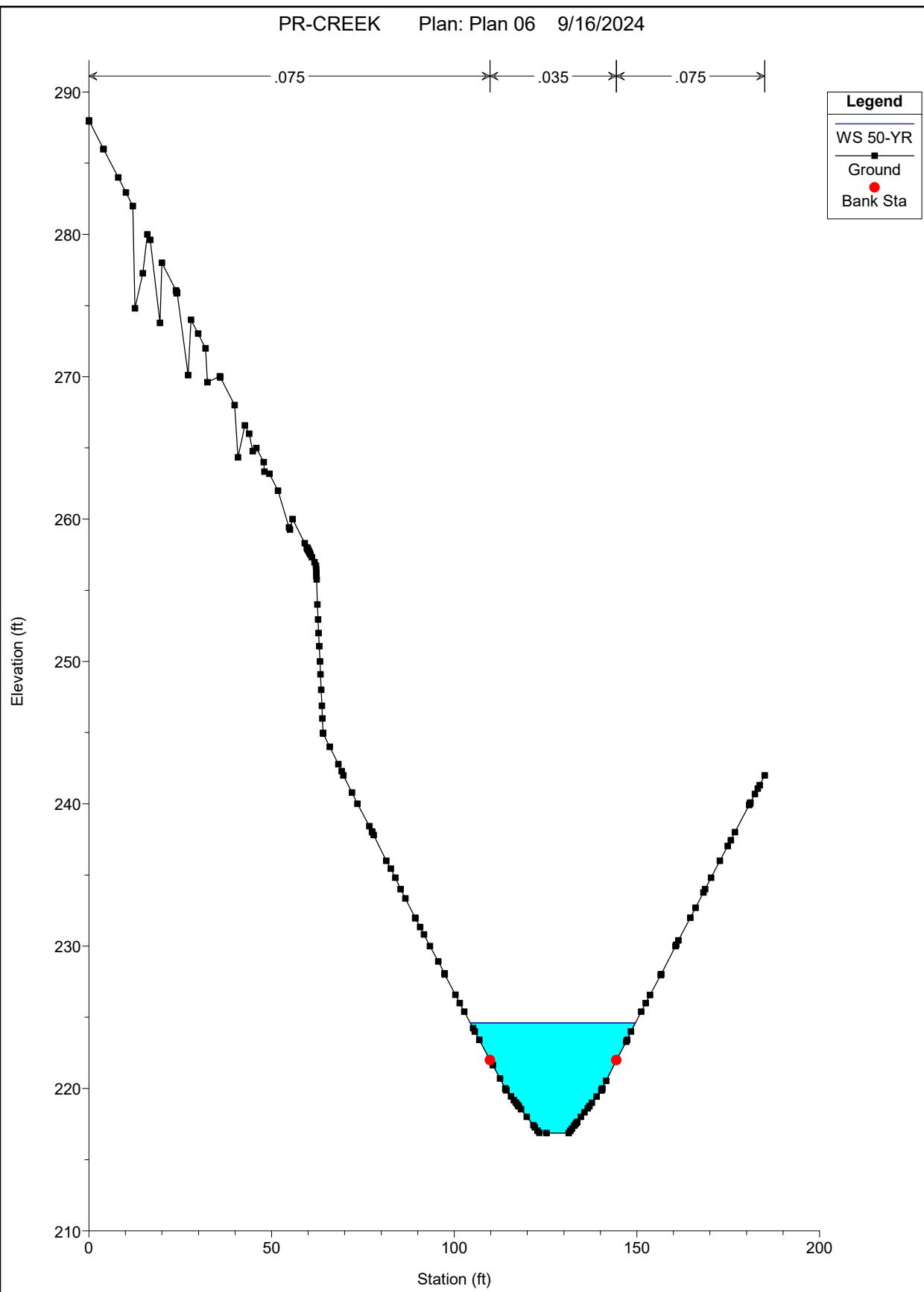


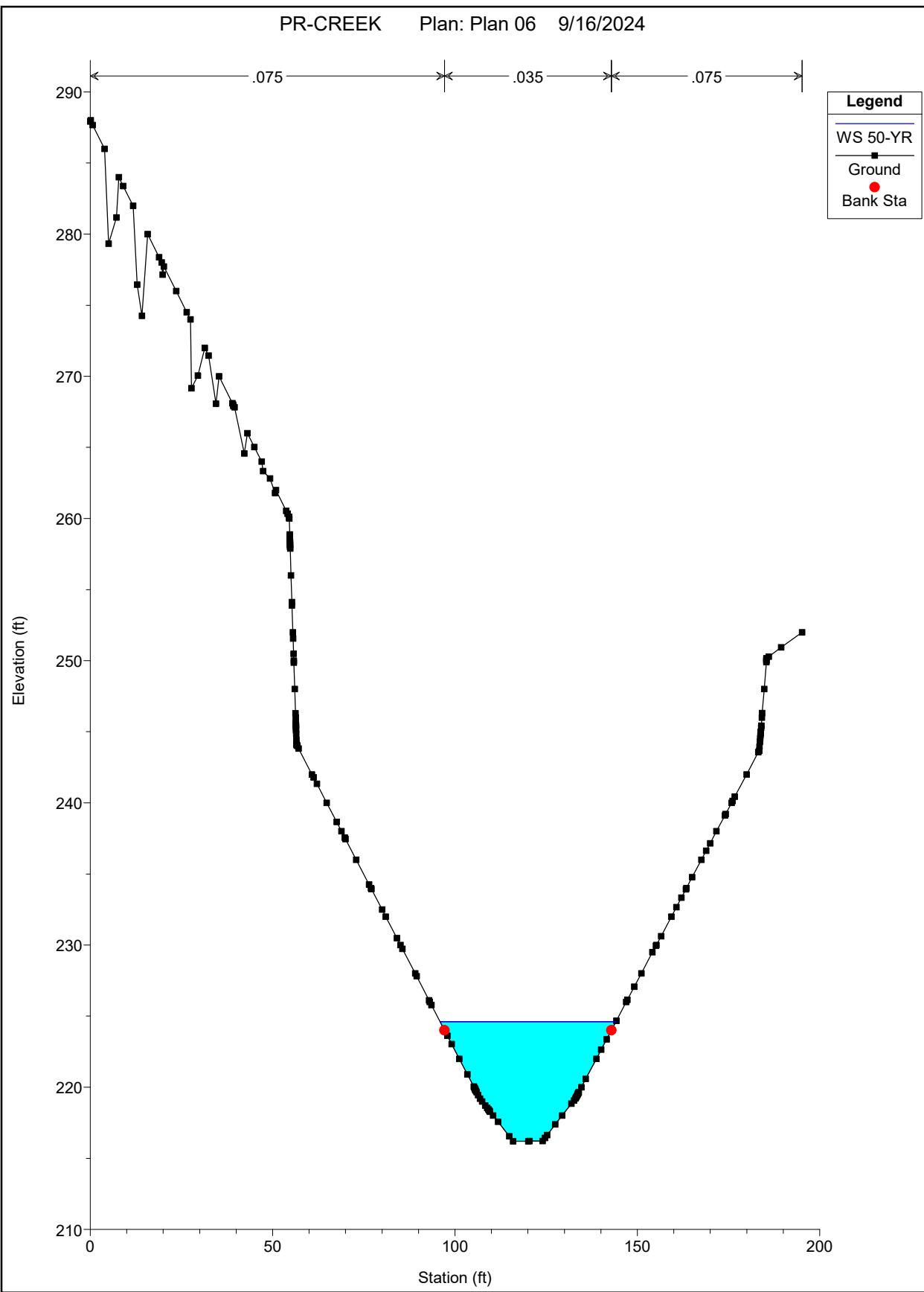

PR-CREEK Plan: Plan 06 9/16/2024



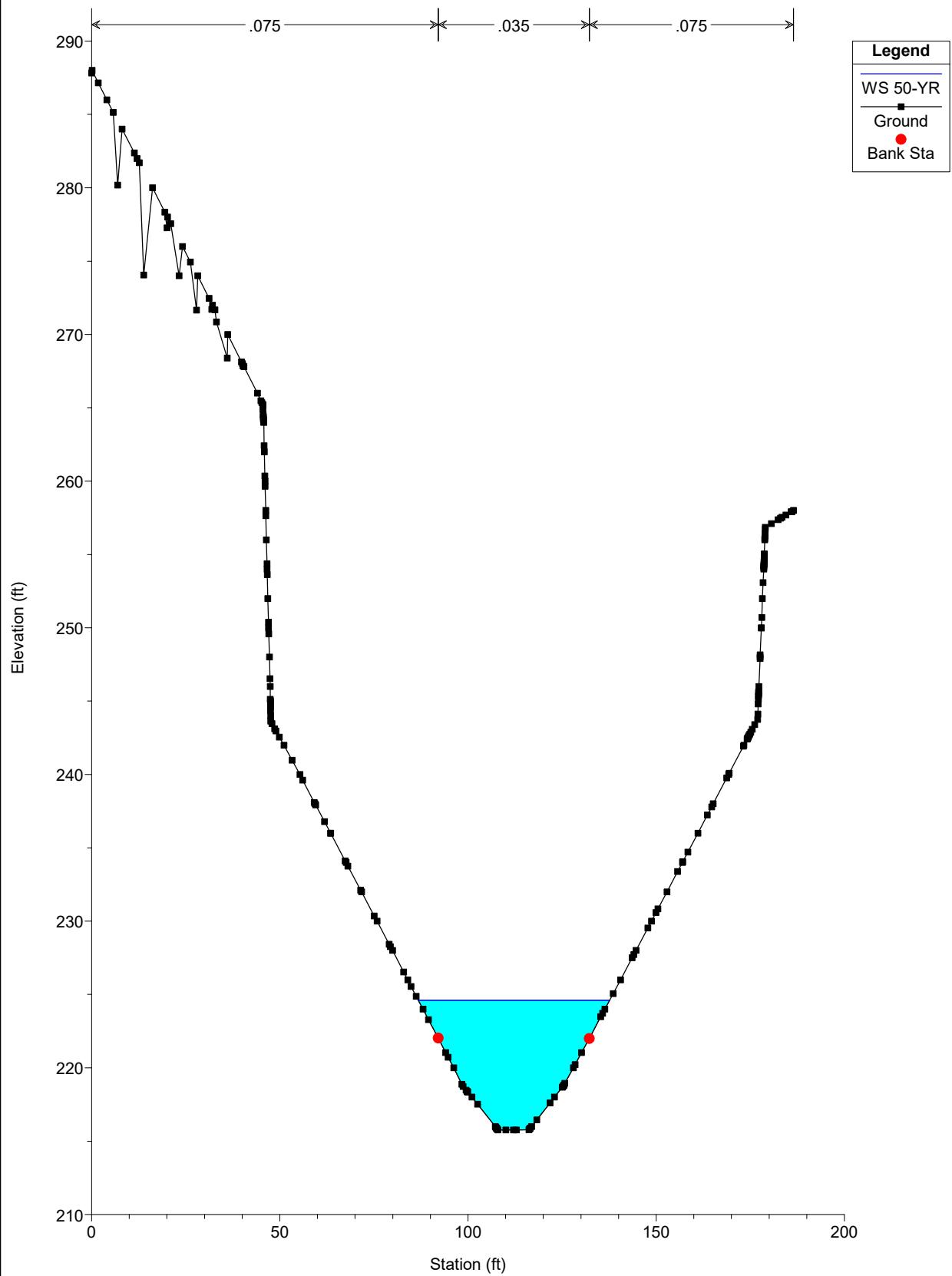

PR-CREEK Plan: Plan 06 9/16/2024

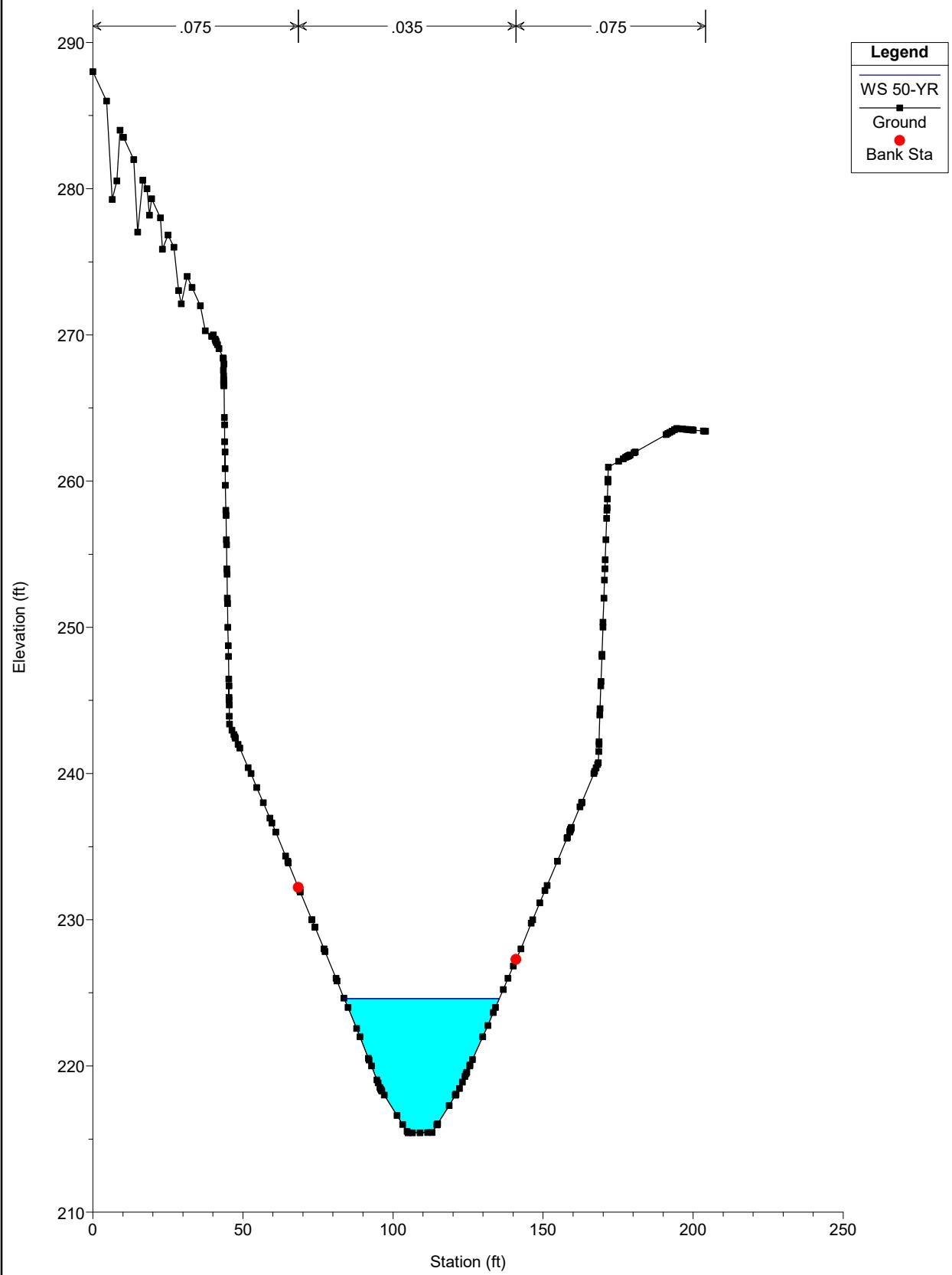


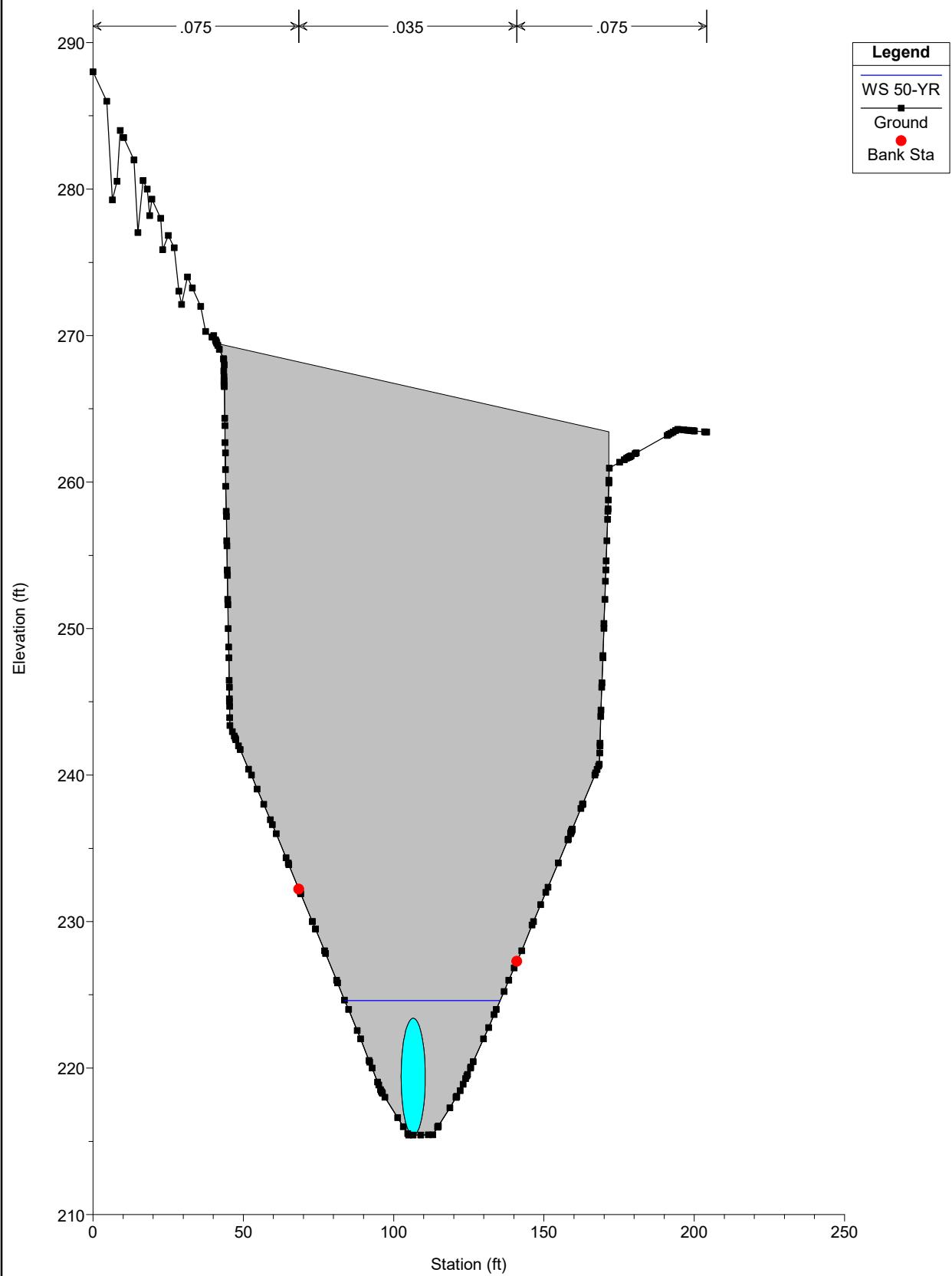

PR-CREEK Plan: Plan 06 9/16/2024

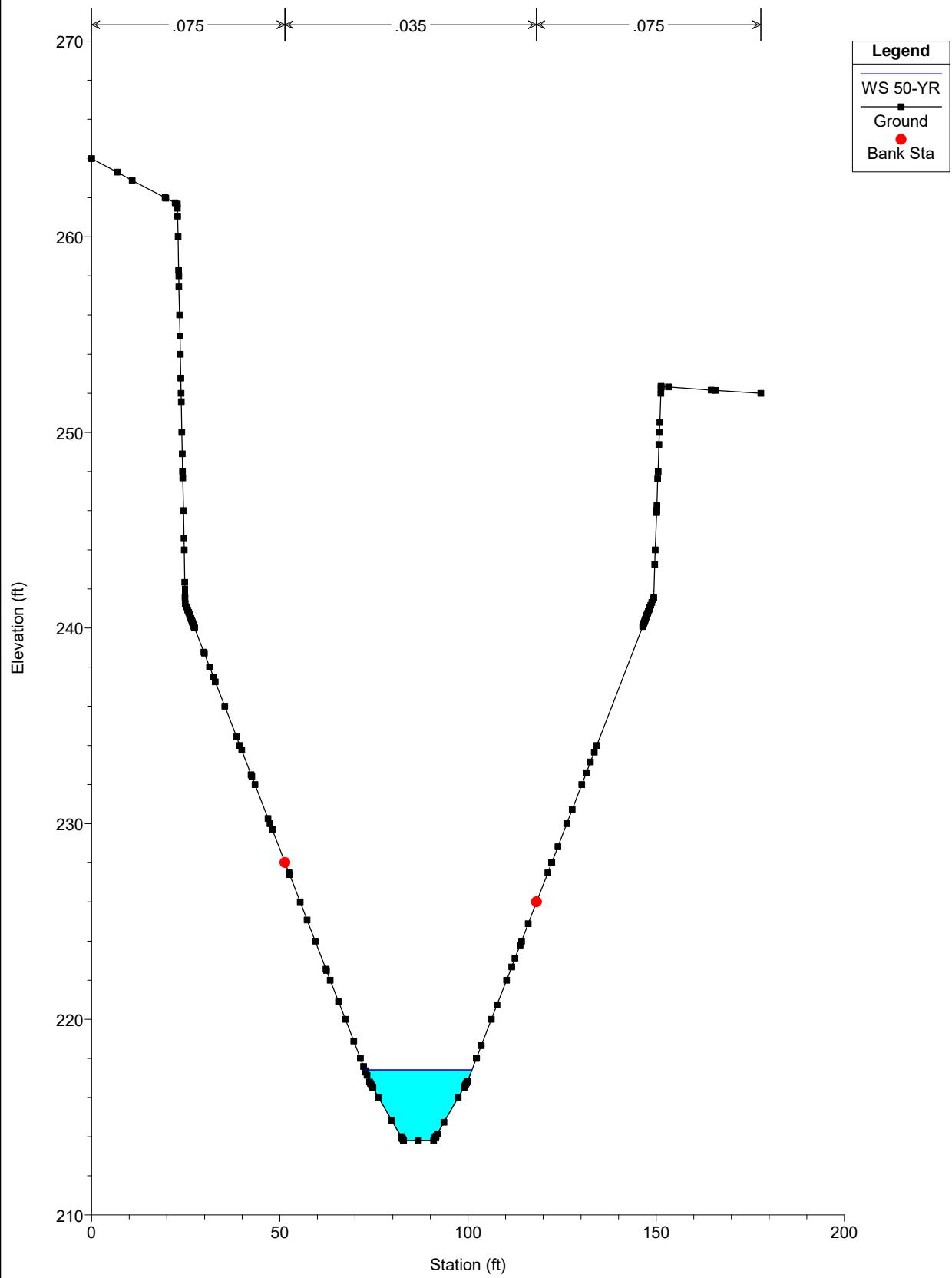



PR-CREEK Plan: Plan 06 9/16/2024

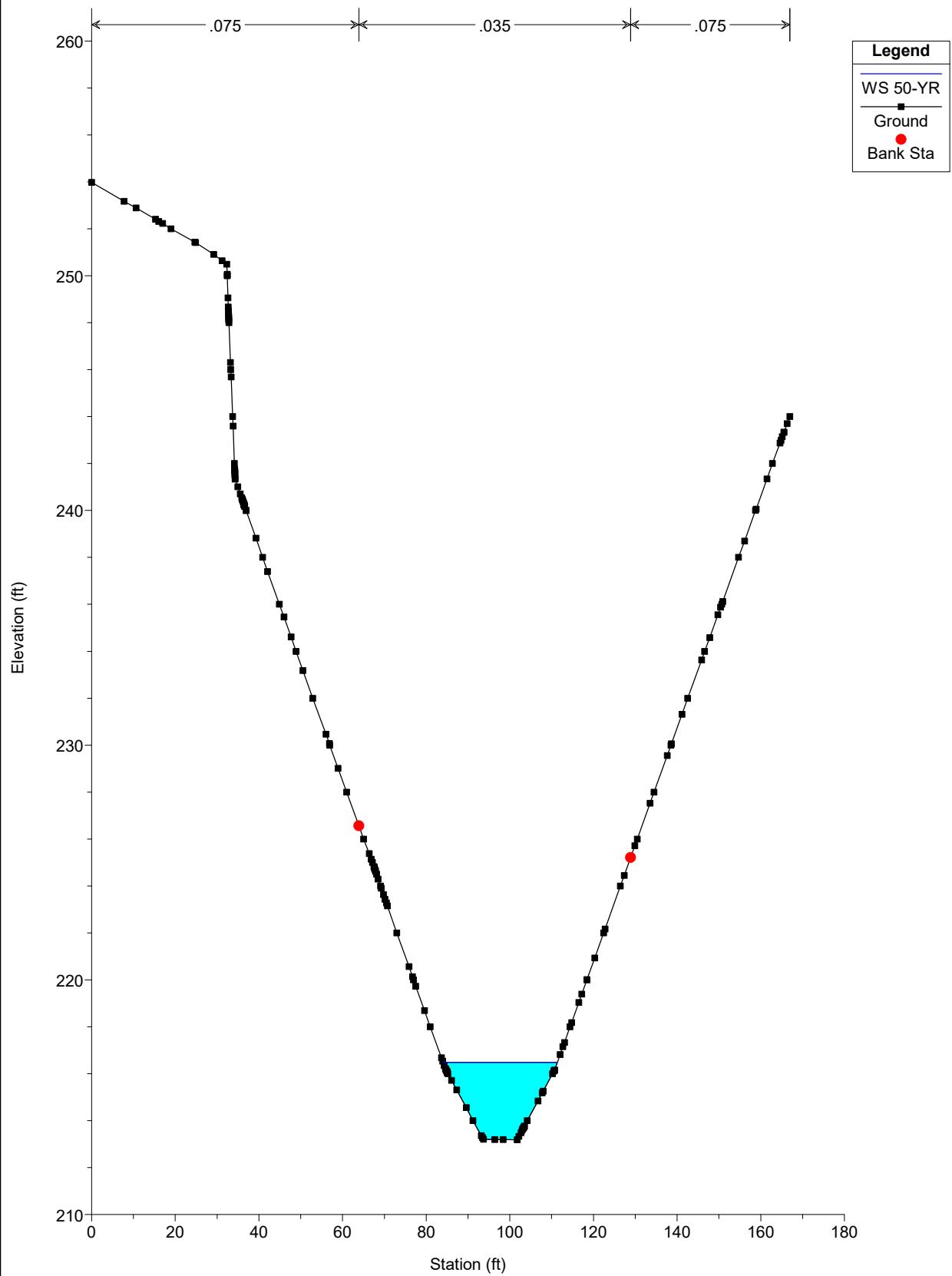




PR-CREEK Plan: Plan 06 9/16/2024

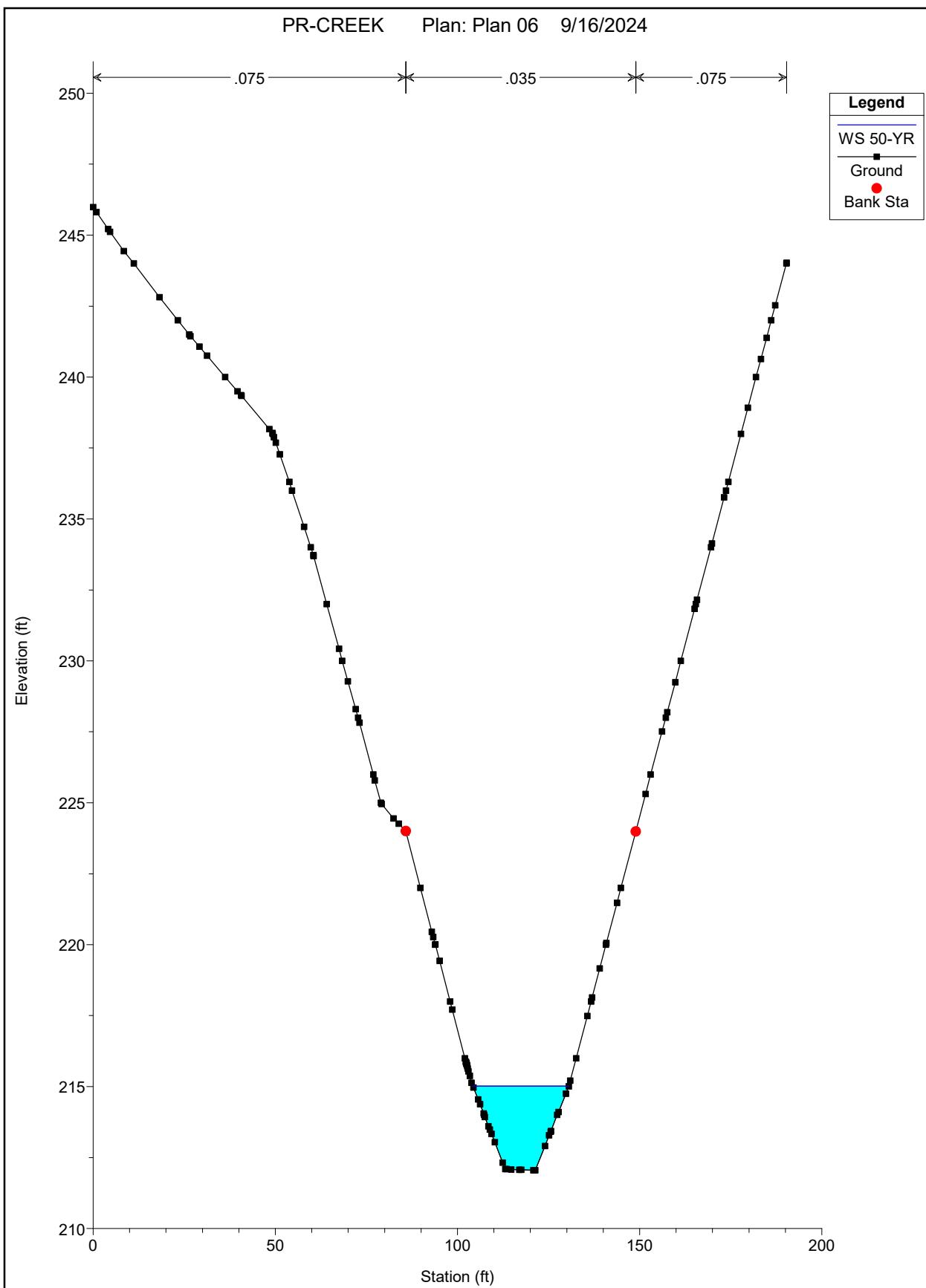


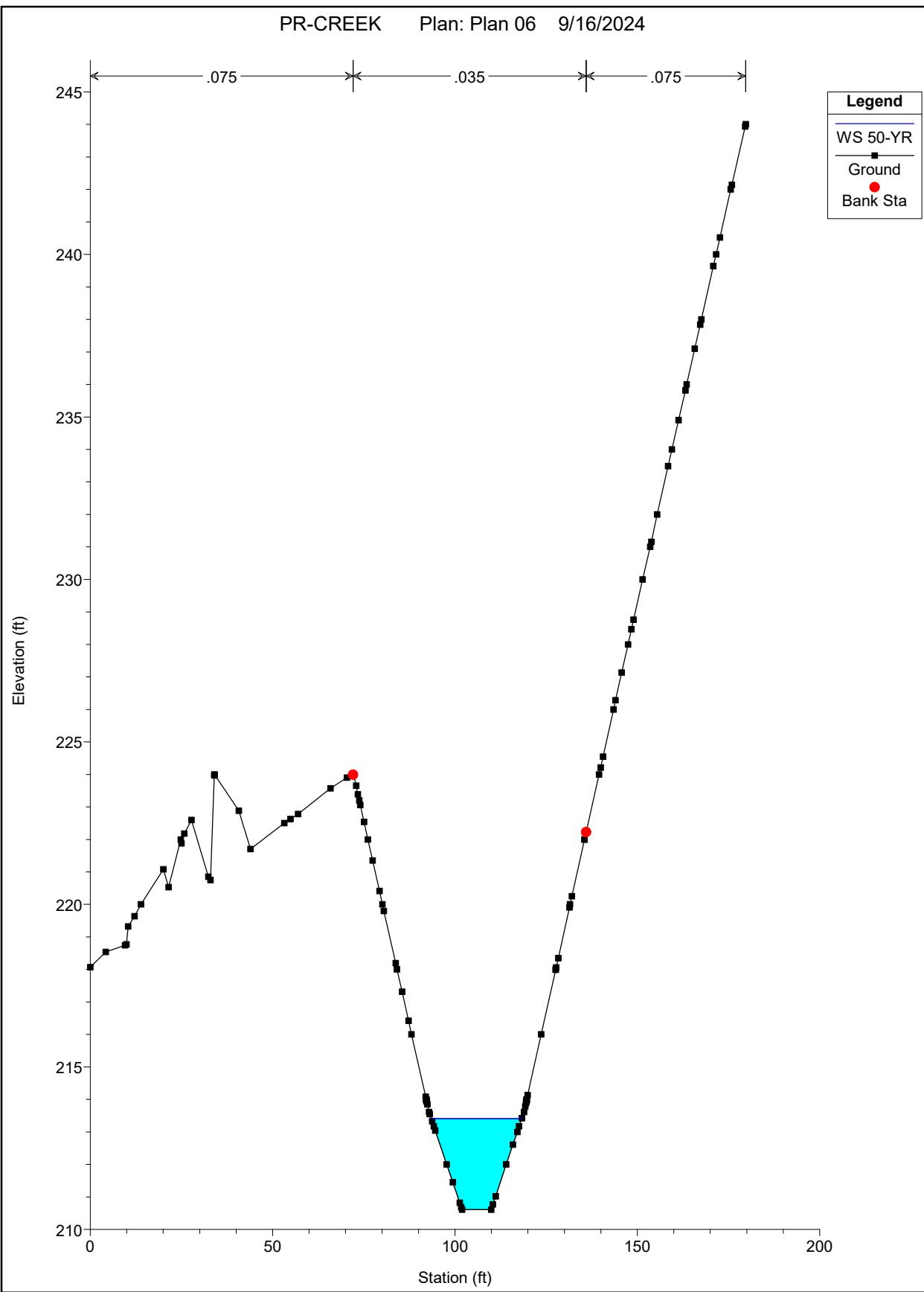



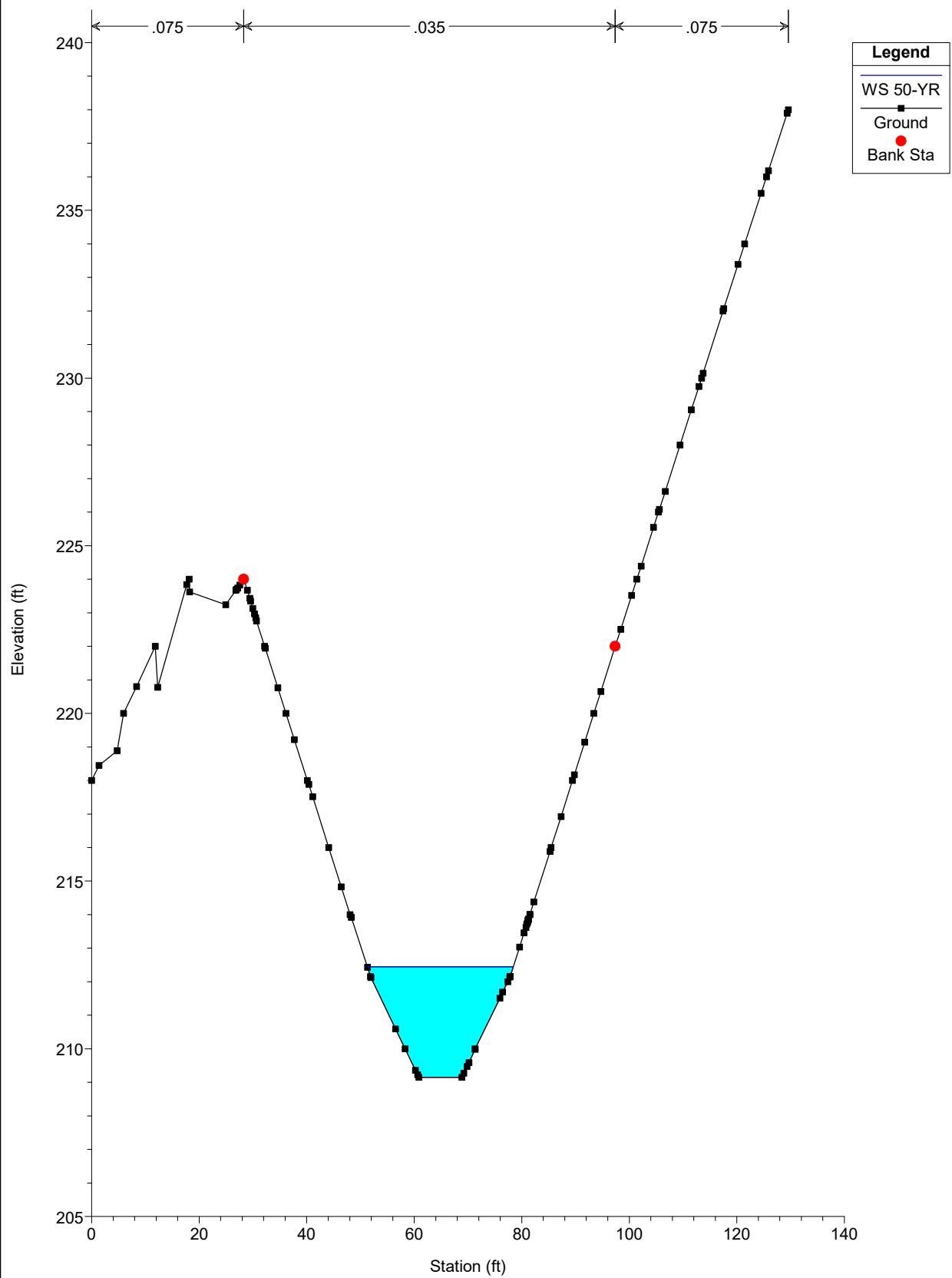

PR-CREEK Plan: Plan 06 9/16/2024

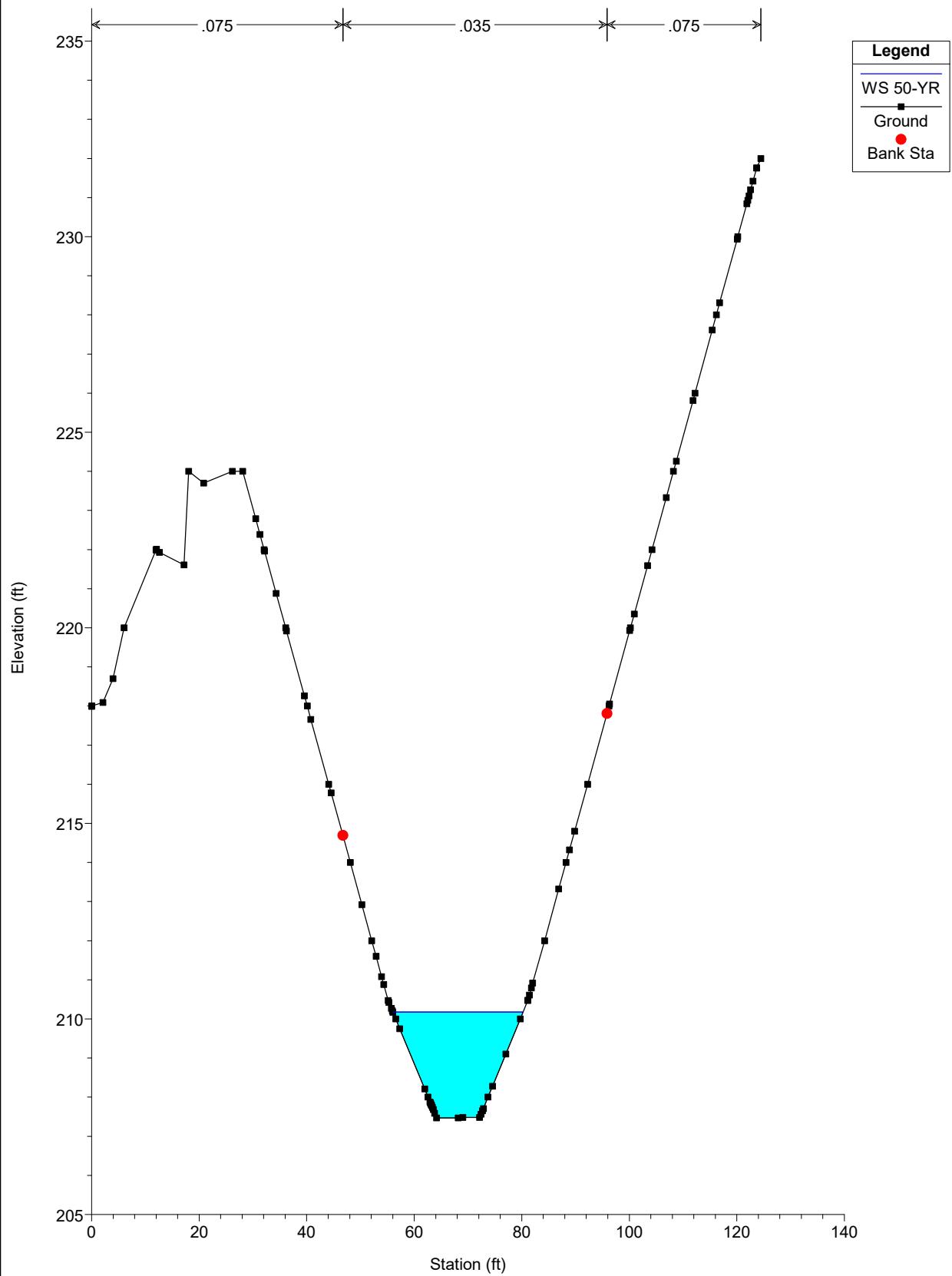




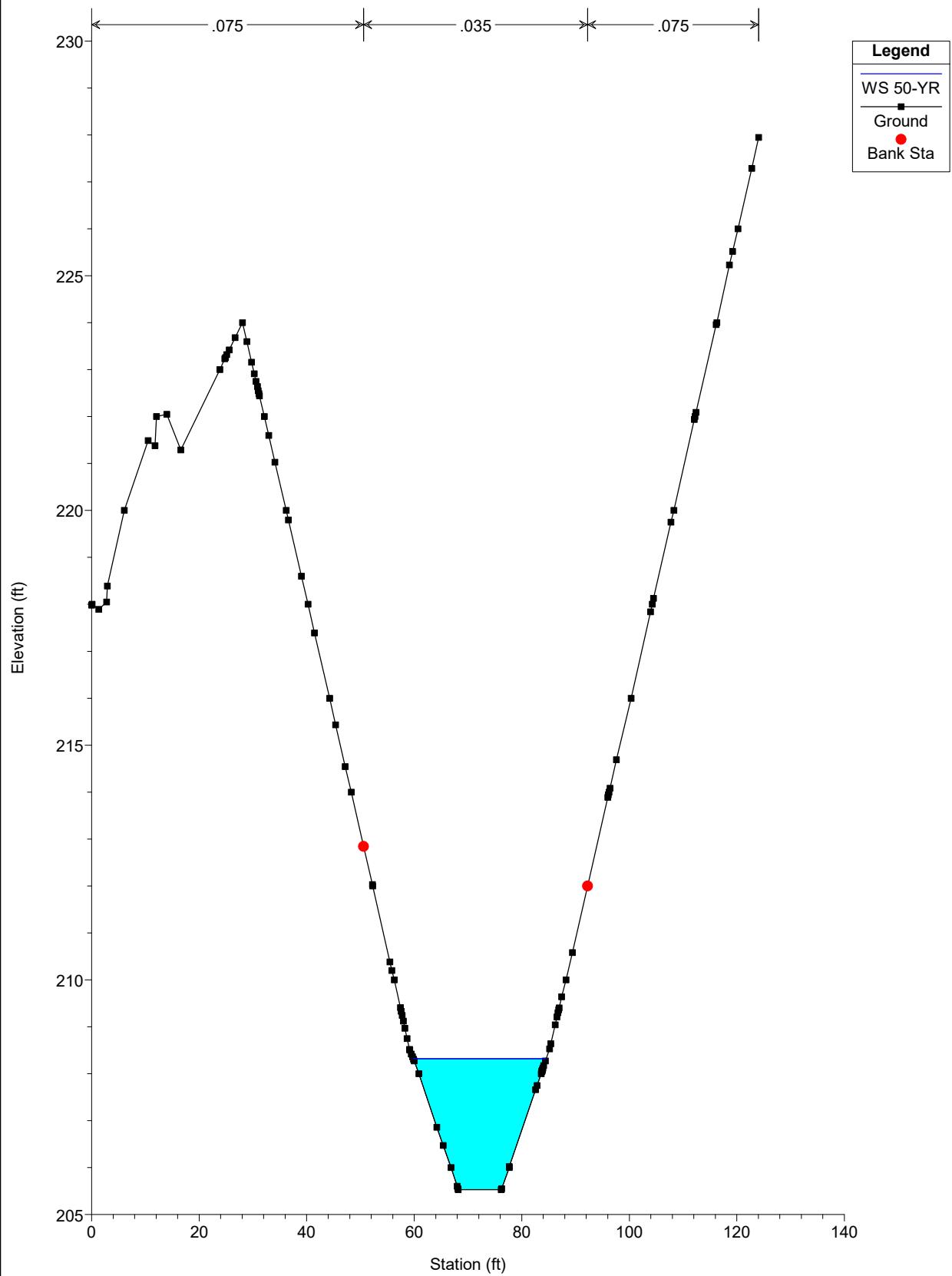



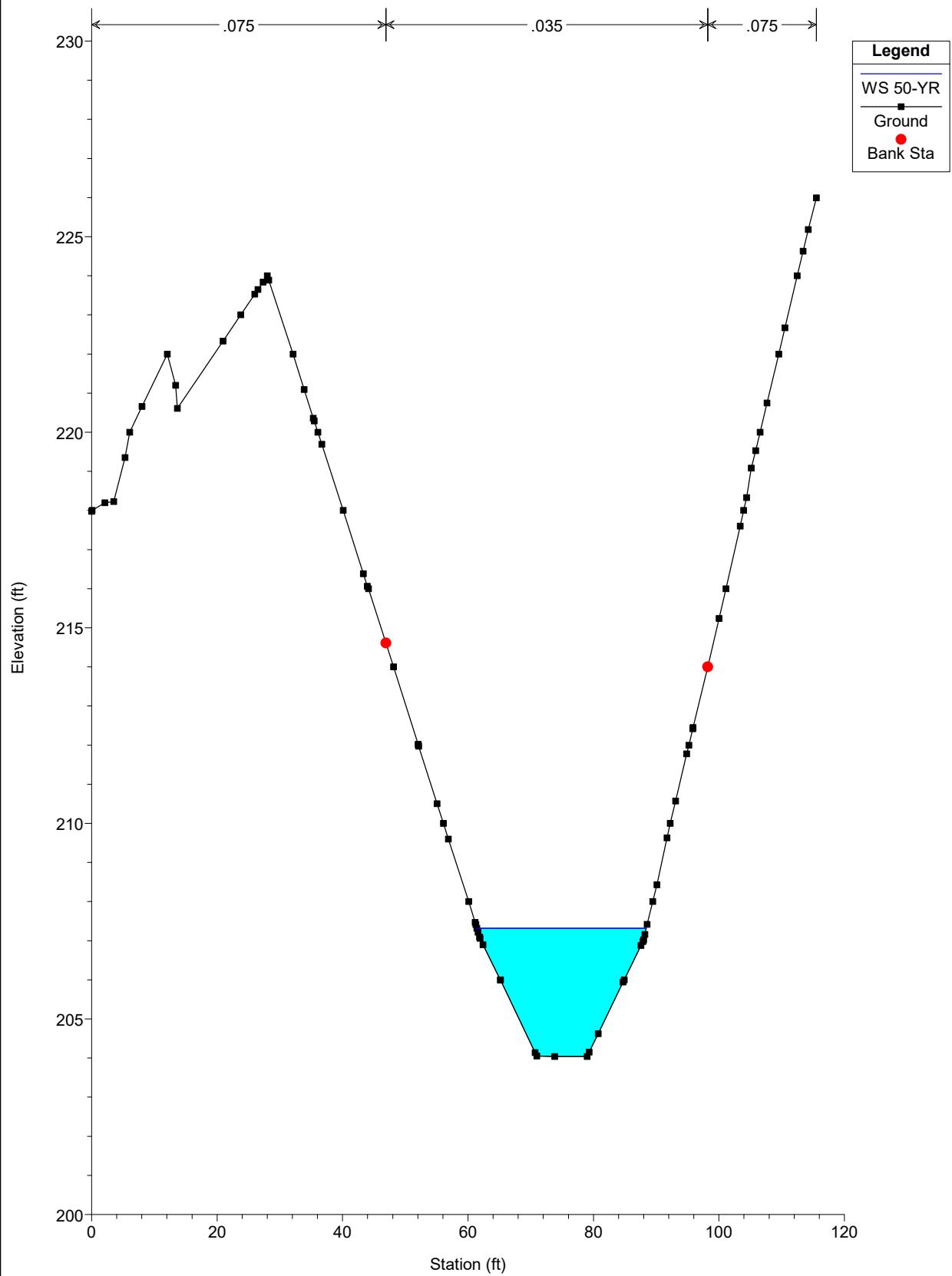





PR-CREEK Plan: Plan 06 9/16/2024




PR-CREEK Plan: Plan 06 9/16/2024








PR-CREEK Plan: Plan 06 9/16/2024





HEC-RAS Plan: Plan 06 River: PR-UNT Reach: PR-CREEK Profile: 50-YR

| Reach    | River Sta | Profile | Q Total<br>(cfs) | Min Ch El<br>(ft) | W.S. Elev<br>(ft) | Crit W.S.<br>(ft) | E.G. Elev<br>(ft) | E.G. Slope<br>(ft/ft) | Vel Chnl<br>(ft/s) | Flow Area<br>(sq ft) | Top Width<br>(ft) | Froude # Chl |
|----------|-----------|---------|------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|--------------------|----------------------|-------------------|--------------|
| PR-CREEK | 1110.72   | 50-YR   | 497.00           | 221.48            | 224.44            | 224.74            | 226.03            | 0.020040              | 10.14              | 50.55                | 26.03             | 1.19         |
| PR-CREEK | 1037.67   | 50-YR   | 497.00           | 220.57            | 224.88            | 223.87            | 225.39            | 0.004123              | 5.74               | 88.58                | 31.29             | 0.57         |
| PR-CREEK | 941.1     | 50-YR   | 497.00           | 219.80            | 224.70            |                   | 225.04            | 0.002360              | 4.68               | 109.28               | 34.16             | 0.44         |
| PR-CREEK | 857.83    | 50-YR   | 497.00           | 219.07            | 224.64            |                   | 224.86            | 0.001321              | 3.73               | 134.85               | 37.39             | 0.33         |
| PR-CREEK | 785.54    | 50-YR   | 497.00           | 218.18            | 224.62            |                   | 224.77            | 0.000682              | 3.15               | 166.80               | 40.46             | 0.25         |
| PR-CREEK | 713.12    | 50-YR   | 497.00           | 217.58            | 224.61            |                   | 224.72            | 0.000446              | 2.65               | 196.12               | 44.02             | 0.20         |
| PR-CREEK | 657.59    | 50-YR   | 497.00           | 216.87            | 224.61            |                   | 224.70            | 0.000315              | 2.38               | 220.04               | 45.26             | 0.17         |
| PR-CREEK | 612.11    | 50-YR   | 497.00           | 216.20            | 224.61            |                   | 224.67            | 0.000243              | 1.97               | 252.48               | 48.19             | 0.15         |
| PR-CREEK | 587.14    | 50-YR   | 497.00           | 215.76            | 224.61            |                   | 224.67            | 0.000167              | 1.86               | 279.06               | 50.87             | 0.13         |
| PR-CREEK | 512.85    | 50-YR   | 497.00           | 215.42            | 224.61            | 218.73            | 224.65            | 0.000176              | 1.70               | 292.03               | 51.71             | 0.13         |
| PR-CREEK | 482       |         |                  |                   |                   |                   |                   |                       |                    |                      |                   |              |
| PR-CREEK | 421.84    | 50-YR   | 497.00           | 213.80            | 217.41            |                   | 218.25            | 0.010100              | 7.37               | 67.43                | 28.44             | 0.84         |
| PR-CREEK | 368.44    | 50-YR   | 497.00           | 213.18            | 216.48            | 216.48            | 217.58            | 0.014796              | 8.42               | 59.06                | 27.28             | 1.01         |
| PR-CREEK | 310.56    | 50-YR   | 497.00           | 212.05            | 215.02            | 215.35            | 216.50            | 0.022969              | 9.76               | 50.95                | 26.36             | 1.24         |
| PR-CREEK | 263.41    | 50-YR   | 497.00           | 210.61            | 213.41            | 213.91            | 215.23            | 0.030075              | 10.83              | 45.88                | 24.80             | 1.40         |
| PR-CREEK | 191.5     | 50-YR   | 497.00           | 209.15            | 212.44            | 212.46            | 213.56            | 0.015014              | 8.47               | 58.70                | 27.16             | 1.02         |
| PR-CREEK | 133.35    | 50-YR   | 497.00           | 207.47            | 210.18            | 210.77            | 212.20            | 0.034678              | 11.41              | 43.55                | 24.23             | 1.50         |
| PR-CREEK | 72.46     | 50-YR   | 497.00           | 205.53            | 208.32            | 208.83            | 210.17            | 0.030546              | 10.89              | 45.62                | 24.73             | 1.41         |
| PR-CREEK | 0         | 50-YR   | 497.00           | 204.04            | 207.32            | 207.35            | 208.44            | 0.015193              | 8.51               | 58.38                | 27.01             | 1.02         |

Errors Warnings and Notes for Plan : Plan 06

|           |                                                                                                                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location: | River: PR-UNT Reach: PR-CREEK RS: 1037.67 Profile: 50-YR                                                                                                                                                                                                                |
| Note:     | Hydraulic jump has occurred between this cross section and the previous upstream section.                                                                                                                                                                               |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 482 Profile: 50-YR                                                                                                                                                                                                                    |
| Note:     | During the supercritical calculations a hydraulic jump occurred at the outlet of (leaving) the culvert.                                                                                                                                                                 |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 482 Profile: 50-YR Culv: Culvert #1                                                                                                                                                                                                   |
| Warning:  | During the supercritical analysis, the program could not converge on a supercritical answer in the downstream cross section. The program used the solution with the least error.                                                                                        |
| Note:     | The flow in the culvert is entirely supercritical.                                                                                                                                                                                                                      |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 368.44 Profile: 50-YR                                                                                                                                                                                                                 |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.                                                                                      |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Warning:  | During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 310.56 Profile: 50-YR                                                                                                                                                                                                                 |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 263.41 Profile: 50-YR                                                                                                                                                                                                                 |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 191.5 Profile: 50-YR                                                                                                                                                                                                                  |
| Warning:  | The energy equation could not be balanced within the specified number of iterations. The program selected the water surface that had the least amount of error between computed and assumed values.                                                                     |
| Warning:  | The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.                                                                                                                                                   |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 133.35 Profile: 50-YR                                                                                                                                                                                                                 |
| Warning:  | The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.                                                                                                                                                   |
| Warning:  | The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.                                                                                             |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 72.46 Profile: 50-YR                                                                                                                                                                                                                  |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |
| Location: | River: PR-UNT Reach: PR-CREEK RS: 0 Profile: 50-YR                                                                                                                                                                                                                      |
| Warning:  | The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.                                                                                                                                                   |
| Warning:  | The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.<br>This may indicate the need for additional cross sections.                                                                                                           |